Газ, или газообра́зное состоя́ние — одно из четырёх основных агрегатных состояний вещества, характеризующееся очень слабыми связями между составляющими его частицами, а также их большой подвижностью. Частицы газа почти свободно и хаотически движутся в промежутках между столкновениями, во время которых происходит резкое изменение характера их движения.
Вя́зкость — одно из явлений переноса, свойство текучих тел оказывать сопротивление перемещению одной их части относительно другой. В результате макроскопическая работа, затрачиваемая на это перемещение, рассеивается в виде тепла.
Идеа́льный газ — теоретическая модель, широко применяемая для описания свойств и поведения реальных газов при умеренных давлениях и температурах. В этой модели, во-первых, предполагается, что составляющие газ частицы не взаимодействуют друг с другом, то есть их размеры пренебрежимо малы, поэтому в объёме, занятом идеальным газом, нет взаимных неупругих столкновений частиц. Частицы идеального газа претерпевают столкновения только со стенками сосуда. Второе предположение: между частицами газа нет дальнодействующего взаимодействия, например, электростатического или гравитационного. Дополнительное условие упругих столкновений между молекулами и стенками сосуда в рамках молекулярно-кинетической теории приводит к термодинамике идеального газа.
Адиабати́ческий, или адиаба́тный проце́сс — термодинамический процесс в макроскопической системе, при котором система не обменивается теплотой с окружающим пространством. Серьёзное исследование адиабатических процессов началось в XVIII веке. В целом термин «адиабатический» в разных областях науки всегда подразумевает сохранение неизменным какого-то параметра. Так в квантовой химии, электронно-адиабатический процесс — это процесс, в котором не изменяется квантовое число электронного состояния. Например, молекула всегда остаётся в первом возбуждённом состоянии вне зависимости от изменения положения атомных ядер. Соответственно неадиабатическим называется процесс, в котором происходит изменение какого-то важного параметра.
Уравне́ния Навье́ — Сто́кса — система дифференциальных уравнений в частных производных, описывающая движение вязкой ньютоновской жидкости. Уравнения Навье — Стокса являются одними из важнейших в гидродинамике и применяются в математическом моделировании многих природных явлений и технических задач. Названы по имени французского физика Анри Навье и британского математика Джорджа Стокса.
Зако́н Берну́лли устанавливает зависимость между скоростью стационарного потока жидкости и её давлением. Согласно этому закону, если вдоль линии тока давление жидкости повышается, то скорость течения убывает, и наоборот. Количественное выражение закона в виде интеграла Бернулли является результатом интегрирования уравнений гидродинамики идеальной жидкости.
Уравне́ние состоя́ния — соотношение, отражающее для конкретного класса термодинамических систем связь между характеризующими её макроскопическими физическими величинами, такими как температура, давление, объём, химический потенциал, энтропия, внутренняя энергия, энтальпия и др. Уравнения состояния необходимы для получения с помощью математического аппарата термодинамики конкретных результатов, касающихся рассматриваемой системы. Эти уравнения не содержатся в постулатах термодинамики, так что для каждого выбранного для изучения макроскопического объекта их либо определяют эмпирически, либо для модели изучаемой системы находят методами статистической физики. В рамках термодинамики уравнения состояния считают заданными при определении системы. Если изучаемый объект допускает термодинамическое описание, то это описание выполняют посредством уравнений состояния, которые для реальных веществ могут иметь весьма сложный вид.
Эффект Джо́уля — То́мсона — явление изменения температуры газа или жидкости при стационарном адиабатическом дросселировании — медленном протекании газа под действием постоянного перепада давлений сквозь дроссель. Используется как один из методов получения низких температур.
Уравне́ние Ван-дер-Ва́альса — уравнение, связывающее основные термодинамические величины в модели газа Ван-дер-Ваальса.
Реальный газ — в общем случае — газообразное состояние реально существующего вещества. В термодинамике под реальным газом, понимается газ, который не описывается в точности уравнением Клапейрона — Менделеева, в отличие упрощенной его модели — гипотетического идеального газа, строго подчиняющегося вышеуказанному уравнению. Обычно под реальным газом понимают газообразное состояние вещества во всем диапазоне его существования. Однако, существует и другая классификация, по которой реальным газом называется высоко перегретый пар, состояние которого незначительно отличается от состояния идеального газа, а к парам относят перегретый пар, состояние которого заметно отличается от идеального газа, и насыщенный пар, который вообще не подчиняется законам идеального газа. С позиции молекулярной теории строения вещества реальный газ — это газ, свойства которого зависят от взаимодействия и размеров молекул. Зависимости между его параметрами показывают, что молекулы в реальном газе взаимодействуют между собой и занимают определённый объём. Состояние реального газа часто на практике описывается обобщённым уравнением Клапейрона — Менделеева:
Закон соответственных состояний гласит, что все вещества подчиняются одному уравнению состояния, если это уравнение выразить через приведённые переменные. Этот закон является приближённым и позволяет достаточно просто оценивать свойства плотного газа или жидкости с точностью порядка 10—15 %. Первоначально был сформулирован Ван дер Ваальсом в 1873 году.
Неустойчивость Рэлея — Тейлора — самопроизвольное нарастание возмущений давления, плотности и скорости в газообразных и жидких средах с неоднородной плотностью, находящихся в гравитационном поле либо движущихся с ускорением.
Уравнение состояния Редлиха — Квонга — двухпараметрическое уравнение состояния реального газа, полученное О. Редлихом и Дж. Квонгом в 1949 году как улучшение уравнения Ван-дер-Ваальса. При этом Отто Редлих в своей статье 1975 года пишет, что уравнение не опирается на теоретические обоснования, а является по сути удачной эмпирической модификацией ранее известных уравнений.
Уравнение состояния Бенедикта — Вебба — Рубина — многопараметрическое уравнение состояния, полученное в работах 1940—42 годов Мэнсоном Бенедиктом, Джорджем Веббом (Уэббом) и Льюисом Рубином в ходе улучшения уравнения Битти — Бриджмена. Уравнение было получено корреляцией термодинамических и волюметрических данных жидких и парогазообразных лёгких углеводородов, а также их смесей. Уравнение, в отличие от уравнения Редлиха — Квонга, не является кубическим относительно коэффициента сжимаемости , однако при этом структура уравнения Бенедикта — Вебба — Рубина позволяет описывать состояние широкого класса веществ.
Сжимаемость — свойство вещества изменять свой объём под действием всестороннего равномерного внешнего давления. Сжимаемость характеризуется коэффициентом сжимаемости, который определяется формулой
Уравнение Битти — Бриджмена — уравнение состояния реального газа, полученное Дж. Битти и О. Бриджменом и опубликованное ими в 1927 году. Ими предложено эмпирическое уравнение состояния для описания поведения реальных газов в широком диапазоне температур и давлений.
Уравнение состояния Пенга — Робинсона — модификация уравнения Ван-дер-Ваальса, связывающая основные термодинамические параметры реального газа за счёт введения дополнительного объёмозависимого кубического трёхчлена, учитывающего межмолекулярные взаимодействия в реальном газе. Эта модификация уравнения применяется преимущественно для описания поведения углеводородов нормального строения и смесей.
Соотношения Максвелла — тождественные соотношения между производными термодинамических величин. Являются следствием математического тождества — равенства смешанных производных термодинамического потенциала.
Соотношения Бриджмена представляют собой базовый набор уравнений для термодинамических производных. Носят имя американского физика Перси Уильямса Бриджмена.