Уравнение Дира́ка — релятивистски инвариантное уравнение движения для биспинорного классического поля электрона, применимое также для описания других точечных фермионов со спином 1/2; установлено Полем Дираком в 1928 году.
Уравне́ние Шрёдингера — линейное дифференциальное уравнение в частных производных, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах.
Теоре́ма Нётер или первая теорема Нётер утверждает, что каждой дифференцируемой симметрии действия для физической системы с консервативными силами соответствует закон сохранения. Теорема была доказана математиком Эмми Нётер в 1915 году и опубликована в 1918 году. Действие для физической системы представляет собой интеграл по времени функции Лагранжа, из которого можно определить поведение системы согласно принципу наименьшего действия. Эта теорема применима только к непрерывным и гладким симметриям над физическим пространством.
Уравне́ния Ма́ксвелла — система уравнений в дифференциальной или интегральной форме, описывающих электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах. Вместе с выражением для силы Лоренца, задающим меру воздействия электромагнитного поля на заряженные частицы, эти уравнения образуют полную систему уравнений классической электродинамики, называемую иногда уравнениями Максвелла — Лоренца. Уравнения, сформулированные Джеймсом Клерком Максвеллом на основе накопленных к середине XIX века экспериментальных результатов, сыграли ключевую роль в развитии представлений теоретической физики и оказали сильное, зачастую решающее влияние не только на все области физики, непосредственно связанные с электромагнетизмом, но и на многие возникшие впоследствии фундаментальные теории, предмет которых не сводился к электромагнетизму.
Калибро́вка ве́кторного потенциа́ла — наложение дополнительных условий, позволяющих однозначно вычислить векторный потенциал электромагнитного поля при решении тех или иных физических задач. Налагаемые условия являются искусственными и служат для упрощения математических выкладок. Наиболее широкое распространение получили калибровка Кулона и калибровка Лоренца, но существуют и применяются и другие калибровки.
Фу́нкция Гри́на — функция, используемая для решения линейных неоднородных дифференциальных уравнений с граничными условиями . Названа в честь английского математика Джорджа Грина, который первым развил соответствующую теорию в 1830-е годы.
Магнитоста́тика — раздел классической электродинамики, в котором изучаются свойства стационарного магнитного поля, рассматриваются способы расчета магнитного поля постоянных токов и анализируется взаимодействие токов посредством создаваемых ими полей.
Альтернативными теориями гравитации принято называть теории гравитации, существующие как альтернативы общей теории относительности (ОТО) или существенно изменяющие её. К альтернативным теориям гравитации часто относят вообще любые теории, не совпадающие с общей теорией относительности хотя бы в деталях или как-то обобщающие её. Тем не менее, нередко теории гравитации, особенно квантовые, совпадающие с общей теорией относительности в низкоэнергетическом пределе, «альтернативными» не называют.
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики.
Закон Био́—Савара—Лапла́са — физический закон для определения вектора индукции магнитного поля, порождаемого постоянным электрическим током. Был установлен экспериментально в 1820 году Био и Саваром и сформулирован в общем виде Лапласом. Лаплас показал также, что с помощью этого закона можно вычислить магнитное поле движущегося точечного заряда.
Уравнение Паули — уравнение нерелятивистской квантовой механики, описывающее движение заряженной частицы со спином 1/2 во внешнем электромагнитном поле. Предложено Паули в 1927 году. Не путать с основным кинетическим уравнением, также иногда называемым уравнением Паули.
В современной физике электромагни́тный потенциа́л обычно означает четырёхмерный потенциал электромагнитного поля, являющийся 4-вектором (1-формой). Именно в связи с векторным (4-векторным) характером электромагнитного потенциала электромагнитное поле относится к классу векторных полей в том смысле, который употребляется в современной физике по отношению к фундаментальным бозонным полям.
- Обозначается электромагнитный потенциал чаще всего или , что подразумевает величину с индексом, имеющую четыре компоненты или , причём индексом 0, как правило, обозначается временная компонента, а индексами 1, 2, 3 — три пространственных. В данной статье мы будем придерживаться первого обозначения.
- В современной литературе могут использоваться более абстрактные обозначения.
Ве́кторный потенциа́л электромагни́тного по́ля — в электродинамике, векторный потенциал, ротор которого равен магнитной индукции:
Теорема о циркуляции магнитного поля — одна из фундаментальных теорем классической электродинамики, сформулированная Андре Мари Ампером в 1826 году. В 1861 году Джеймс Максвелл снова вывел эту теорему, опираясь на аналогии с гидродинамикой, и обобщил её. Уравнение, представляющее собой содержание теоремы в этом обобщённом виде, входит в число уравнений Максвелла.. Теорема гласит:
Спонта́нное наруше́ние симме́три́и — способ нарушения симметрии физической системы, при котором исходное состояние и уравнения движения системы инвариантны относительно некоторых преобразований симметрии, но в процессе эволюции система переходит в состояние, для которого инвариантность относительно некоторых преобразований начальной симметрии нарушается. Спонтанное нарушение симметрии всегда связано с вырождением состояния с минимальной энергией, называемого вакуумом. Множество всех вакуумов имеет начальную симметрию, однако каждый вакуум в отдельности — нет. Например, шарик в жёлобе с двумя ямами скатывается из неустойчивого симметричного состояния в устойчивое состояние с минимальной энергией либо влево, либо вправо, разрушая при этом симметрию относительно изменения левого на правое.
Фотоны, которые мигрируют в биологических тканях могут быть описаны при помощи численного моделирования методом Монте Карло или аналитическим уравнением переноса излучения (УПИ). Однако, УПИ трудно решается без применения упрощений (приближений). Стандартным методом упрощения УПИ является диффузионное приближение. Общее решение уравнения диффузии для фотонов получается быстрее, но менее точно чем методом Монте Карло.
Атом гелия — это атом химического элемента гелия. Гелий состоит из двух электронов, связанных с ядром, содержащим два протона вместе с одним (3He) или двумя (4He) нейтронами, удерживаемыми сильным взаимодействием. В отличие от водорода, замкнутой формы решения уравнения Шрёдингера для атома гелия не найдено. Однако различные приближения, такие как метод Хартри — Фока, можно использовать для оценки энергии основного состояния и волновой функции атома.