Уравнение с малым параметром

Перейти к навигацииПерейти к поиску

Уравнение с малым параметром — скалярное или векторное дифференциальное уравнение, в котором имеется коэффициент, малый по сравнению с другими. Этот параметр может стоять в правой части дифференциального уравнения, при этом говорят о регулярном возмущении уравнения. Кроме того, малый параметр может стоят при старшей производной, в этом случае говорят о сингулярном возмущении.

Регулярно возмущённая задача Коши (начальная задача):

,

при определённых условиях на правую часть её решение существует, единственно и, кроме того, имеет непрерывную зависимость от малого параметра .

Для решения уравнений с малым параметром в математической физике применяются специальные методы. Это связано с наличием различных эффектов, в том числе эффекта пограничного слоя.

Иногда под уравнением с малым параметром понимают и уравнение, малый параметр в котором стоит при производной по нормали в естественном граничном условии.

Часто в приложениях возникают задачи, в которых малый параметр стоит при старшей производной, например:

.

Такую задачу принято называть сингулярно возмущённой. Если формально положить малый параметр равным нулю, то первое уравнение системы перестанет быть дифференциальным. По этой причине решение уравнения может не удовлетворять начальному значению . Именно в таких задачах может наблюдаться эффект пограничного слоя. Решение вблизи окрестности справа испытывает резкое изменение. Эта область характеризуется большими градиентами и её часто называют областью погранслоя. Для решения подобных систем применяют асимптотические методы. Наиболее известны из них — метод Тихонова и метод Васильевой.

Литература