Уравнение Дира́ка — релятивистски инвариантное уравнение движения для биспинорного классического поля электрона, применимое также для описания других точечных фермионов со спином 1/2; установлено Полем Дираком в 1928 году.
Основная теорема римановой геометрии утверждает, что на любом римановом многообразии имеется единственная метрическая связность без кручения, называемая связностью Леви-Чивиты данной метрики. Здесь метрическая связность — это связность, сохраняющая метрический тензор.
Параболические уравнения — класс дифференциальных уравнений в частных производных. Один из видов уравнений, описывающих нестационарные процессы.
Эллиптический оператор — дифференциальный оператор 2-го порядка в частных производных. Является частным случаем гипоэлиптического оператора
Эллиптические уравнения — класс дифференциальных уравнений в частных производных, описывающих стационарные процессы.
Дифференциа́льное уравне́ние в ча́стных произво́дных — дифференциальное уравнение, содержащее неизвестные функции нескольких переменных и их частные производные.
Си́мволы Кристо́ффеля — коэффициенты координатного выражения аффинной связности, в частности, связности Леви-Чивиты. Названы в честь Эльвина Бруно Кристоффеля. Используются в дифференциальной геометрии, общей теории относительности и близких к ней теориях гравитации. Появляются в координатном выражении тензора кривизны. При этом сами символы тензорами не являются.
Теория Калуцы — Клейна — одна из многомерных теорий гравитации, позволяющая объединить два фундаментальных физических взаимодействия: гравитацию и электромагнетизм. Теория была впервые опубликована в 1921 году немецким математиком Теодором Калуцей, который расширил пространство Минковского до 5-мерного пространства и получил из уравнений своей теории уравнения общей теории относительности и классические уравнения Максвелла. Обоснование ненаблюдаемости пятого измерения было предложено шведским физиком Оскаром Клейном в 1926 году.
Вселе́нная Фри́дмана — одна из космологических моделей, удовлетворяющих полевым уравнениям общей теории относительности (ОТО), первая из нестационарных моделей Вселенной. Получена Александром Фридманом в 1922. Модель Фридмана описывает однородную изотропную в общем случае нестационарную Вселенную с веществом, обладающую положительной, нулевой или отрицательной постоянной кривизной. Эта работа учёного стала первым основным теоретическим развитием ОТО после работ Эйнштейна 1915—1917 гг.
Вторая квадратичная форма поверхности ― квадратичная форма на касательном расслоении поверхности, которая, в отличие от первой квадратичной формы, определяет внешнюю геометрию поверхности в окрестности данной точки.
Фи́нслерова геометрия — одно из обобщений римановой геометрии. В финслеровой геометрии рассматриваются многообразия с финслеровой метрикой; то есть выбором нормы на каждом касательном пространстве, которая гладко меняется от точки к точке.
Теорема о равнораспределении кинетической энергии по степеням свободы, закон равнораспределения, теорема о равнораспределении — связывает температуру системы с её средней энергией в классической статистической механике. В первоначальном виде теорема утверждала, что при тепловом равновесии энергия разделена одинаково между её различными формами, например, средняя кинетическая энергия поступательного движения молекулы должна равняться средней кинетической энергии её вращательного движения.
Норма́льные колеба́ния, со́бственные колебания или мо́ды — набор характерных для колебательной системы типов гармонических колебаний. Каждое из нормальных колебаний физической системы, например, колебаний атомов в молекулах, характеризуется своей частотой. Такая частота называется нормальной частотой, или собственной частотой. Набор частот нормальных колебаний составляет колебательный спектр. Произвольное колебание физической системы можно представить в виде суперпозиции различных нормальных колебаний. Вынужденные колебания физической системы испытывают резонанс на частотах, которые совпадают с частотами нормальных колебаний этой системы.
Геодезическая кривизна кривой в римановой геометрии измеряет, насколько далеко кривая отличается от геодезической. Например, для 1D кривой на 2D поверхности, вложенной в 3D пространство, это кривизна кривой, спроецированной на плоскость, касательную к поверхности. Более обще, в заданном многообразии геодезическая кривизна ― это обычная кривизна кривой . Однако если кривая лежит в подмногообразии многообразия , геодезическая кривизна относится к кривизне в , и она отличается в общем виде от кривизны в объемлющем многообразии . (Объемлющая) кривизна кривой зависит от двух факторов ― кривизны подмногообразия в направлении , которая зависит только от направления кривой и кривизны в многообразии , которая является величиной второго порядка. Связь между ними ― . В частности, геодезические на имеют нулевую геодезическую кривизну («прямые»), так что .
Биметрические теория гравитации — альтернативные теории гравитации, в которых вместо одного метрического тензора используются два или более. Часто вторая метрика вводится только при высоких энергиях, в предположении, что скорость света может зависеть от энергии. Наиболее известными примерами биметрических теорий являются теория Розена и релятивистская теория гравитации.
Уравне́ние Ланда́у — Ли́фшица — уравнение, описывающее движение намагниченности в приближении континуальной модели в твердых телах. Впервые введено Л. Д. Ландау и Е. М. Лифшицем в 1935 году.
Параметризо́ванный постнью́тоновский формали́зм — версия постньютоновского формализма, применимая не только к общей теории относительности, но и к другим метрическим теориям гравитации, когда движения тел удовлетворяют принципу эквивалентности Эйнштейна. В таком подходе явно выписываются все возможные зависимости гравитационного поля от распределения материи вплоть до соответствующего порядка обратного квадрата скорости света и составляется наиболее общее выражение для решения уравнений гравитационного поля и движения материи. Различные теории гравитации при этом предсказывают различные значения коэффициентов — так называемых ППН параметров — в общих выражениях. Это приводит к потенциально наблюдаемым эффектам, экспериментальные ограничения на величину которых приводят к ограничениям на ППН параметры, и соответственно — к ограничениям на теории гравитации, их предсказывающие. Можно сказать, что ППН параметры описывают различия между ньютоновой и описываемой теорией гравитации. ППН формализм применим когда гравитационные поля слабы, а скорости движения формирующих их тел малы по сравнению со скоростью света — каноническими примерами применения являются движение Солнечной системы и систем пульсаров в двойных системах.
Формула Фейнмана — Каца — математическая формула, устанавливающая связь между дифференциальными уравнениями с частными производными и случайными процессами. Названа в честь физика Ричарда Фейнмана и математика Марка Каца.
Разрывный метод Галёркина — метод решения операторных уравнений, в основном дифференциальных уравнений. Является развитием классического метода конечных элементов (МКЭ), основанного на вариационной постановке Галёркина.