Функция f является моногенной, только если df(zX) = z df(X), где z — любое комплексное число.
Условия Коши — Римана, называемые также условиями Даламбера — Эйлера, — соотношения, связывающие вещественную и мнимую части всякой дифференцируемой функции комплексного переменного .
Для того чтобы функция , определённая в некоторой области комплексной плоскости, была дифференцируема в точке как функция комплексного переменного , необходимо и достаточно, чтобы её вещественная и мнимая части и были дифференцируемы в точке как функции вещественных переменных и и чтобы, кроме того, в этой точке выполнялись условия Коши — Римана:
Компактная запись:
или
Если условия Коши — Римана выполнены, то производная представима в любой из следующих форм:
Вещественное приращение. Положим и рассмотрим выражение
Существование комплексного предела равносильно существованию одного и того же предела в любом направлении, включая Поэтому в точке z0 существует частная производная функции f(z) по x и имеет место формула
Это означает, что если функция дифференцируема, то производные функции по x и по y точно одинаковы, то есть необходимость условий Коши — Римана доказана.
2. Достаточность
Иными словами, нужно доказать в обратную сторону — что если производные функции по x и по y действительно одинаковы, то функция оказывается дифференцируемой вообще в любых направлениях.
Приращение функции
Следуя определению дифференцируемости, приращение функции в окрестности точки может быть записано в виде
где комплекснозначная функция служит «придаточным» слагаемым и стремится к нулю при быстрее, чем и то есть
Составим теперь разностное соотношение и преобразуем его к виду
Условие дифференцируемости
Теперь, чтобы доказать достаточность условий Коши — Римана, подставим их в разностное соотношение и получим следующее:
Заметим, что при стремлении к нулю последнее слагаемое этой формулы стремится к нулю, а первое остаётся неизменным. Поэтому предел одинаков в любом направлении приращения а не только вдоль вещественной и мнимой осей, а значит, этот предел существует, что и доказывает достаточность.
Используя Условия Коши — Римана в декартовых координатах, получаем равенство соответствующих выражений, что приводит к результату
Связь модуля и аргумента дифференцируемой комплексной функции
Часто удобно записывать комплексную функцию в показательной форме:
Тогда условия Коши — Римана связывают модуль и аргумент функции следующим образом:
А если функция и её аргумент выражены в полярной системе одновременно:
то запись приобретает вид:
Геометрический смысл условий Коши — Римана
Пусть функция где дифференцируема. Рассмотрим в комплексной плоскости два семейства кривых (линии уровня).
Первое семейство:
Второе семейство:
Тогда условия Коши — Римана означают, что кривые первого семейства ортогональны кривым второго семейства.
Алгебраический смысл условий Коши — Римана
Если рассматривать множество комплексных чисел как векторное пространство над , то значение производной функции в точке является линейным отображением из 2-мерного векторного пространства в себя (-линейность). Если же рассматривать как одномерное векторное пространство над , то и производная в точке будет линейным отображением одномерного векторного пространства в себя (-линейность), которое в координатах представляет собой умножение на комплексное число . Очевидно, всякое -линейное отображение -линейно. Так как поле (одномерное векторное пространство) изоморфно полю вещественных матриц вида с обычными матричными операциями, условия Коши — Римана, накладываемые на элементы матрицы Якоби отображения в точке (точнее, отображения в точке ), являются условиями -линейности , т.е. .
Коши пользовался этими соотношениями для построения теории функций, начиная с мемуара, представленного Парижской академии наук в 1814 году. Знаменитая диссертация Римана об основах теории функций относится к 1851 году.
Титчмарш Э. Теория функций: Пер. с англ. — 2-е изд., перераб. — М.: Наука, 1980. — 464 с.
Шабат Б. В. Введение в комплексный анализ. — М.: Наука, 1969. — 577 с.
Картан А. Дифференциальное исчисление. Дифференциальные формы. — М.: Мир, 1971. — 392 с.
Похожие исследовательские статьи
Кинема́тика точки — раздел кинематики, изучающий математическое описание движения материальных точек. Основной задачей кинематики является описание движения при помощи математического аппарата без выяснения причин, вызывающих это движение.
Произво́дная функции — понятие дифференциального исчисления, характеризующее скорость изменения функции в данной точке. Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную, называют дифференцируемой.
Градие́нт — вектор, своим направлением указывающий направление наискорейшего роста некоторой скалярной величины .
Де́льта-фу́нкция — обобщённая функция, которая позволяет записать точечное воздействие, а также пространственную плотность физических величин, сосредоточенных или приложенных в одной точке.
Формула Эйлера связывает комплексную экспоненту с тригонометрическими функциями. Названа в честь Леонарда Эйлера, который её ввёл.
Ко́мпле́ксный ана́лиз, тео́рия фу́нкций ко́мпле́ксного переме́нного — раздел математического анализа, в котором рассматриваются и изучаются функции комплексного аргумента.
Опера́тор Лапла́са — дифференциальный оператор, действующий в линейном пространстве гладких функций и обозначаемый символом . Функции он ставит в соответствие функцию
Фу́нкция Гри́на — функция, используемая для решения линейных неоднородных дифференциальных уравнений с граничными условиями . Названа в честь английского математика Джорджа Грина, который первым развил соответствующую теорию в 1830-е годы.
Лагранжева механика — формулировка классической механики, введённая Луи Лагранжем в 1788 году. В лагранжевой механике траектория объекта получается при помощи отыскания пути, который минимизирует действие — интеграл от функции Лагранжа по времени. Функция Лагранжа для классической механики вводится в виде разности между кинетической энергией и потенциальной энергией.
Вы́чет в комплексном анализе — объект, характеризующий локальные свойства заданной функции или формы.
Уравнение Лапласа — дифференциальное уравнение в частных производных. В трёхмерном пространстве уравнение Лапласа записывается так:
Поля́рная систе́ма координа́т — система координат на плоскости, определяющаяся двумя полярными координатами и , которые связаны с декартовыми прямоугольными координатами и следующими выражениями:
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики.
Эллипти́ческий интегра́л — некоторая функция над полем действительных или комплексных чисел, которая может быть формально представлена в следующем виде:
,
Якобиа́н — определённое обобщение производной функции одной переменной на случай отображений из евклидова пространства в себя.
Кратный интеграл — определённый интеграл, взятый от переменных; например:
.
Уравне́ние Гельмго́льца — это эллиптическое дифференциальное уравнение в частных производных:
Интегра́л Пуассо́на — общее название математических формул, выражающих решение краевой задачи или начальной задачи для уравнений с частными производными некоторых типов.
Тороидальная система координат — ортогональная система координат в пространстве, координатными поверхностями которой являются торы, сферы и полуплоскости. Данная система координат может быть получена посредством вращения двумерной биполярной системы координат вокруг оси, равноудалённой от фокусов биполярной системы.
Диполя́рная, или дипо́льная, систе́ма координа́т — трёхмерная криволинейная ортогональная система координат, основанная на точечном (центральном) диполе, точнее, на его инвариантах преобразования координат.
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.