Произво́дная функции — понятие дифференциального исчисления, характеризующее скорость изменения функции в данной точке. Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную, называют дифференцируемой.
Преде́лом фу́нкции в точке, предельной для области определения функции, называется такая величина, к которой значение рассматриваемой функции стремится при стремлении её аргумента к данной точке. Одно из основных понятий математического анализа.
Непрерывная функция — функция, которая меняется без мгновенных «скачков», то есть такая, малые изменения аргумента которой приводят к малым изменениям значения функции.
Ко́мпле́ксный ана́лиз, тео́рия фу́нкций ко́мпле́ксного переме́нного — раздел математического анализа, в котором рассматриваются и изучаются функции комплексного аргумента.
Голоморфная функция, иногда называемая регулярной функцией — функция комплексного переменного, определённая на открытом подмножестве комплексной плоскости и комплексно дифференцируемая в каждой точке.
Аналитическое продолжение в комплексном анализе — аналитическая функция, совпадающая с заданной функцией в её исходной области C и определённая при этом в области D, содержащей C — продолжение функции , являющееся аналитическим. Аналитическое продолжение всегда единственно.
Ряд Лорана комплексной функции — представление этой функции в виде степенного ряда, в котором присутствуют слагаемые с отрицательными степенями. Назван в честь французского математика П. А. Лорана.
Вы́чет в комплексном анализе — объект, характеризующий локальные свойства заданной функции или формы.
Компози́ция (суперпози́ция) фу́нкций — это применение одной функции к результату другой.
Теорема Сохоцкого — Вейерштрасса — теорема комплексного анализа, описывающая поведение голоморфной функции в окрестности существенной особой точки.
Особенность или особая точка голоморфной функции f — точка комплексной плоскости, в которой эта функция не определена, её предел бесконечен либо предела не существует вовсе.
Теорема Римана — утверждение из теории функций комплексной переменной о заполнении устранимого разрыва.
Для функции нескольких переменных можно определить понятие предела по одной из переменных при фиксированных значениях остальных переменных. В связи с этим возникает понятие повторного предела.
Многозначная аналитическая функция — многозначная комплексная функция, получаемая при помощи аналитического продолжения по всем путям.