Генети́ческий код — совокупность правил, согласно которым в живых клетках последовательность кодонов переводится в последовательность аминокислот (белков). Собственно перевод (трансляцию) осуществляет рибосома, которая соединяет аминокислоты в цепочку согласно инструкции, записанной в кодонах мРНК. Соответствующие аминокислоты доставляются в рибосому молекулами тРНК. Генетический код всех живых организмов Земли един, что свидетельствует о наличии общего предка.
Митохо́ндрия — двумембранная сферическая или эллипсоидная органелла диаметром обычно около 1 микрометра. Характерна для большинства эукариотических клеток, как автотрофов, так и гетеротрофов. Энергетическая станция клетки; основная функция — окисление органических соединений и использование освобождающейся при их распаде энергии для генерации электрического потенциала, синтеза АТФ и термогенеза. Эти три процесса осуществляются за счёт движения электронов по электронно-транспортной цепи белков внутренней мембраны. Количество митохондрий в клетках различных организмов существенно отличается: так, одноклеточные зелёные водоросли и трипаносомы имеют лишь одну гигантскую митохондрию, тогда как ооцит и амёба Chaos chaos содержат 300 000 и 500 000 митохондрий соответственно; у кишечных анаэробных энтамёб и некоторых других паразитических простейших митохондрии отсутствуют. В специализированных клетках органов животных содержатся сотни и даже тысячи митохондрий.
Рибосо́ма — важнейшая немембранная органелла всех живых клеток, служащая для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК (мРНК). Этот процесс называется трансляцией. Рибосомы имеют сферическую или слегка эллипсоидную форму, диаметром от 15—20 нанометров (прокариоты) до 25—30 нанометров (эукариоты), состоят из большой и малой субъединиц. Малая субъединица считывает информацию с матричной РНК, а большая — присоединяет соответствующую аминокислоту к синтезируемой цепочке белка.
Белки́ — высокомолекулярные органические вещества, состоящие из альфа-аминокислот, соединённых в цепочку пептидной связью. В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций определяет большое разнообразие свойств молекул белков. Кроме того, аминокислотные остатки в составе белка часто подвергаются посттрансляционным модификациям, которые могут возникать и до того, как белок начинает выполнять свою функцию, и во время его «работы» в клетке. Часто в живых организмах несколько молекул разных белков образуют сложные комплексы, например, фотосинтетический комплекс и другие комплексы.
Термина́тор — нуклеотидная последовательность ДНК, на которой завершается транскрипция гена или оперона. Как правило, последовательность терминатора такова, что комплементарная ей последовательность в мРНК вызывает выход новосинтезированного транскрипта из транскрипционного комплекса. Эта последовательность в мРНК может сама по себе вызывать терминацию за счёт собственной вторичной структуры, а может привлекать особые белки — факторы терминации. После высвобождения РНК-полимераза и транскрипционные факторы приступают к транскрипции другого гена.
Ретрови́русы — семейство РНК-содержащих вирусов, заражающих преимущественно позвоночных. Наиболее известный и активно изучаемый представитель — вирус иммунодефицита человека.
Трансля́ция — осуществляемый рибосомой процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК ; реализация генетической информации.
Ма́тричная рибонуклеи́новая кислота́ — РНК, содержащая информацию о первичной структуре белков. мРНК синтезируется на основе ДНК в ходе транскрипции, после чего, в свою очередь, используется в ходе трансляции как матрица для синтеза белков. Тем самым мРНК играет важную роль в «проявлении» (экспрессии) генов.
Тра́нспортно-ма́тричная РНК, также известна как 10Sa-РНК и SsrA-РНК, — небольшая РНК длиной от 260 до 430 нуклеотидов, которая участвует в высвобождении рибосом, «застрявших» во время трансляции проблемных участков мРНК, а также разрушении получившихся в ходе неполной трансляции дефектных пептидов. Механизм высвобождения рибосомы с дефектной мРНК при участии тмРНК получил название транс-трансляции. Первая тмРНК была обнаружена в 1994 году у кишечной палочки Escherichia coli, и с тех пор тмРНК были описаны у разных групп бактерий. Гены тмРНК обнаруживаются в геномах практически всех бактерий и многих органелл.
Стоп-кодон или кодон терминации — тройка нуклеотидных остатков в мРНК, кодирующая прекращение (терминацию) синтеза полипептидной цепи (трансляции). Стандартные стоп-кодоны — УАА, УАГ и УГА.
Триптофа́новый оперо́н — оперон, содержащий гены ферментов, задействованных в биосинтезе аминокислоты триптофан. Триптофановый оперон имеется у многих бактерий, впервые был описан у Escherichia coli. Триптофановый оперон является важной экспериментальной моделью для изучения регуляции экспрессии генов.
Нонсенс-мутация — точечная мутация в последовательности ДНК, которая приводит к появлению стоп-кодона, в результате чего происходит преждевременная терминация синтеза нужного белка. Обычно такой фрагмент не может выполнять функции изначально синтезируемого белка.
Коро́ткие откры́тые ра́мки счи́тывания — открытые рамки считывания, расположенные внутри 5′-нетранслируемой области (5'-UTR) эукариотических и некоторых вирусных мРНК. uORF участвуют в регуляции экспрессии генов у эукариот и вирусов и обычно подавляют трансляцию основной рамки считывания, хотя их действие может сопровождаться различными эффектами.
Но́нсенс-опосре́дованный распа́д мРНК — одна из нескольких цитоплазматических систем клетки, осуществляющих контроль качества мРНК. По пути NMD расщепляются мРНК, содержащие стоп-кодоны в неправильных местах и, следовательно, неправильно сплайсированные. Таким образом, NMD предохраняет клетку от синтеза усечённых белков, которые могут оказаться опасными для клетки. Регулируя экспрессию генов, NMD оказывается вовлечённым в такие клеточные процессы, как рост и пролиферация, ответ на стресс или вирусное вторжение, регулирует работу приобретённого иммунитета, активность нейронов и поведение.
Трансля́ция у прокарио́т — процесс синтеза белка на матрице мРНК, происходящий в клетках прокариотических организмов. В отличие от аналогичного процесса у эукариот, в трансляции у прокариот принимает участие рибосома 70S, а первой (инициаторной) аминокислотой выступает формилметионин, а не метионин.
N-формилметионин — производная аминокислоты метионина, с формильной группой присоединенной к аминной группе. Используется для инициации синтеза белка с генов бактерий, митохондрий и пластид. Часто удаляется из полипептидной цепи в процессе посттрансляционной модификации.
Ко́мплекс сра́щивания экзо́нов — белковый комплекс, формирующийся на пре-мРНК в месте соединения двух экзонов, которые оказались соединёнными друг с другом в ходе сплайсинга. EJC оказывает значительное влияние на контроль качества трансляцию и локализацию сплайсированной мРНК. Считается, что комплекс соединения экзонов обеспечивает позиционно-специфичную память о произошедшем акте сплайсинга. EJC состоит из стабильного гетеротетрамерного кора, который служит платформой для связывания других факторов, вовлечённых в посттранскрипционную регуляцию мРНК. Кор EJC состоит содержит эукариотический фактор инициации трансляции eIF4A-III, связывающийся с аналогом АТФ, а также дополнительные белки Magoh и Y14. Кроме того, EJC взаимодействует со многими другими белками, например, SR-белками. Предполагается, что эти взаимодействия играют важную роль в компактизации мРНК.
Контро́ль ка́чества мРНК — совокупность молекулярных механизмов, обеспечивающих отбраковывание дефектных мРНК и не допускающих их трансляцию. Механизмы контроля качества мРНК действуют на разных этапах биогенеза мРНК. Как правило, они приводят к тому, что дефектные мРНК оказываются помеченными специфическим образом и благодаря этому распознаются ферментами-нуклеазами, разрушающими их.
Nonstop-деграда́ция — механизм контроля качества мРНК, направленный на выявление мРНК, лишённых стоп-кодона, и предотвращение их трансляции. В ходе nonstop-деградации рибосома, которая успела значительно продвинуться в сторону 3'-конца мРНК, диссоциирует, и мРНК направляется в экзосомный комплекс или к РНКазе R для дальнейшего разрушения.
Людмила Юрьевна Фролова — советский и российский молекулярный биолог и биохимик, доктор биологических наук, профессор, заведующая «Лабораторией структурно-функциональной геномики» в Институте молекулярной биологии им. В. А. Энгельгардта РАН. Лауреат Государственной премии СССР в области науки и техники (1979).