Равноме́рная непреры́вность — это свойство функции быть одинаково непрерывной во всех точках области определения. В математическом анализе это понятие вводится для числовых функций, в функциональном анализе оно обобщается на произвольные метрические пространства.
Преде́лом фу́нкции в точке, предельной для области определения функции, называется такая величина, к которой значение рассматриваемой функции стремится при стремлении её аргумента к данной точке. Одно из основных понятий математического анализа.
Непрерывная функция — функция, которая меняется без мгновенных «скачков», то есть такая, малые изменения аргумента которой приводят к малым изменениям значения функции.
Сплайн — функция в математике, область определения которой разбита на конечное число отрезков, на каждом из которых она совпадает с некоторым алгебраическим многочленом (полиномом). Максимальная из степеней использованных полиномов называется степенью сплайна. Разность между степенью сплайна и получившейся гладкостью называется дефектом сплайна. Например, непрерывная ломаная есть сплайн степени 1 и дефекта 1. В современном понимании сплайны — это решения многоточечных краевых задач сеточными методами.
Численное интегрирование — вычисление значения определённого интеграла. Под численным интегрированием понимают набор численных методов для нахождения значения определённого интеграла.
Ряд Те́йлора — разложение функции в бесконечную сумму степенных функций. Частный случай разложения в ряд Тейлора в нулевой точке называется рядом Маклорена.
Центра́льные преде́льные теоре́мы (ЦПТ) — класс теорем в теории вероятностей, утверждающих, что сумма достаточно большого количества слабо зависимых случайных величин, имеющих примерно одинаковые масштабы, имеет распределение, близкое к нормальному.
Конечная разность — математический термин, широко применяющийся в методах вычисления при интерполировании и численном дифференцировании.
Фу́нкция Хевиса́йда — кусочно-постоянная функция, равная нулю для отрицательных значений аргумента и единице — для положительных. В нуле эта функция, вообще говоря, не определена, однако её обычно доопределяют в этой точке некоторым числом, чтобы область определения функции содержала все точки действительной оси. Чаще всего неважно, какое значение функция принимает в нуле, поэтому могут использоваться различные определения функции Хевисайда, удобные по тем или иным соображениям, например:
Формула Симпсона относится к приёмам численного интегрирования. Получила название в честь британского математика Томаса Симпсона (1710—1761).
Теорема Вейерштра́сса — Стоуна — утверждение о возможности представления любой непрерывной функции на хаусдорфовом компакте пределом равномерно сходящейся последовательности непрерывных функций особого класса — алгебры Стоуна.
Метод прямоугольников — метод численного интегрирования функции одной переменной, заключающийся в замене подынтегральной функции на многочлен нулевой степени, то есть константу, на каждом элементарном отрезке. Если рассмотреть график подынтегральной функции, то метод будет заключаться в приближённом вычислении площади под графиком суммированием площадей конечного числа прямоугольников, ширина которых будет определяться расстоянием между соответствующими соседними узлами интегрирования, а высота — значением подынтегральной функции в этих узлах. Алгебраический порядок точности равен 0..
Метод Гаусса — метод численного интегрирования, позволяющий повысить алгебраический порядок точности методов на основе интерполяционных формул путём специального выбора узлов интегрирования без увеличения числа используемых значений подынтегральной функции. Метод Гаусса позволяет достичь максимальной для данного числа узлов интегрирования алгебраической точности.
Теорема Тейлора даёт приближение к функции, дифференцируемой k раз, вблизи данной точки с помощью многочлена Тейлора k-го порядка. Для аналитических функций многочлен Тейлора в данной точке является частичной суммой их ряда Тейлора, который, в свою очередь, полностью определяет функцию в некоторой окрестности точки. Точное содержание теоремы Тейлора до настоящего времени не согласовано. Конечно, существует несколько версий теоремы, применимых в различных ситуациях, и некоторые из этих версий содержат оценки ошибки, возникающей при приближении функции с помощью многочлена Тейлора.
Между функциями распределения и множеством их характеристических функций существует взаимно однозначное соответствие.
Теорема Вейля о равномерном распределении формулирует критерий равномерной распределённости бесконечной последовательности вещественных чисел из отрезка .
Функция, имеющая первообразную — функция, которая может быть получена в результате дифференцирования некоторой функции. Обычно термин употребляется по отношению к вещественнозначным функциям одного вещественного переменного, определённых на промежутке. Именно о таких функциях пойдёт речь далее в статье.