Физи́ческий ма́ятник — осциллятор, представляющий собой твёрдое тело, совершающее колебания в поле каких-либо сил относительно точки, не являющейся центром масс этого тела, или неподвижной оси, перпендикулярной направлению действия сил и не проходящей через центр масс этого тела.
где — суммарный момент сил, действующих на тело относительно оси вращения.
,
где — момент сил, вызванный силой тяжести; — момент сил, вызванный силами трения среды.
Момент, вызванный силой тяжести, зависит от угла отклонения тела от положения равновесия:
.
Если пренебречь сопротивлением среды, дифференциальное уравнение колебаний физического маятника в поле силы тяжести:
.
Если разделить обе части уравнения на и положить
,
получим:
.
Такое уравнение аналогично уравнению колебаний математического маятника длиной . Величина называется приведённой длиной физического маятника.
Центр качания физического маятника. Теорема Гюйгенса
Центр качания — точка, в которой надо сосредоточить всю массу физического маятника, чтобы его период колебаний не изменился.
Поместим на луче, проходящем от точки подвеса через центр тяжести, точку на расстоянии от точки подвеса. Эта точка и будет центром качания маятника.
Действительно, если всю массу сосредоточить в центре качания, то центр качания будет совпадать с центром тяжести. Тогда момент инерции относительно оси подвеса будет равен , а момент силы тяжести относительно той же оси . При этом уравнение движения не изменится.
Согласно теореме Гюйгенса,
Если физический маятник подвесить за центр качания, то его период колебаний не изменится, а прежняя точка подвеса сделается новым центром качания.
Вычислим приведённую длину для нового маятника:
.
Совпадение приведённых длин для двух случаев и доказывает утверждение, сделанное в теореме.
Период колебаний физического маятника
Наиболее общий случай
Для того, чтобы найти период колебаний физического маятника, необходимо решить уравнение качания.
Для этого умножим левую и правую часть этого уравнения на . Тогда:
.
Интегрируя это уравнение, получаем:
,
где — произвольная постоянная. Её можно найти из условия, что в ситуациях, когда , должно быть ( — максимальный угол отклонения). Получаем:
Подставляем и преобразовываем получившееся уравнение:
Отделяем переменные и интегрируем это уравнение:
.
Удобно сделать замену переменной полагая . Тогда искомое уравнение принимает вид:
Если — случай малых максимальных угловых отклонений от равновесия — то так как разложение синуса в ряд Маклорена и уравнения движения переходит в уравнение гармонического осциллятора без трения:
В иной формулировке: если амплитуда колебаний мала, то корень в знаменателе эллиптического интеграла приближённо равен единице. Такой интеграл легко берётся, и получается хорошо известная формула малых колебаний:
Эта формула даёт результаты приемлемой точности (ошибка менее 1 %) при углах, не превышающих 4°.
Следующий порядок приближения можно использовать с приемлемой точностью (ошибка менее 1 %) при углах отклонения до 1 радиана (≈57°):
Математи́ческий ма́ятник — осциллятор, представляющий собой механическую систему, состоящую из материальной точки на конце невесомой нерастяжимой нити или лёгкого стержня и находящуюся в однородном поле сил тяготения. Другой конец нити (стержня) обычно неподвижен. Период малых собственных колебаний маятника длины L, подвешенного в поле тяжести, равен
Интерференция волн — взаимное увеличение или уменьшение результирующей амплитуды двух или нескольких когерентных волн при их наложении друг на друга. Сопровождается чередованием максимумов (пучностей) и минимумов (узлов) интенсивности в пространстве. Результат интерференции зависит от разности фаз накладывающихся волн.
Когере́нтность — в физике скоррелированность (согласованность) нескольких колебательных или волновых процессов во времени, проявляющаяся при их сложении. Колебания когерентны, если разность их фаз постоянна во времени, и при сложении колебаний получается колебание той же частоты.
Эпицикло́ида — плоская кривая, образуемая фиксированной точкой окружности, катящейся по внешней стороне другой окружности без скольжения.
Фу́нкция Гри́на — функция, используемая для решения линейных неоднородных дифференциальных уравнений с граничными условиями . Названа в честь английского математика Джорджа Грина, который первым развил соответствующую теорию в 1830-е годы.
Лагранжева механика — формулировка классической механики, введённая Луи Лагранжем в 1788 году. В лагранжевой механике траектория объекта получается при помощи отыскания пути, который минимизирует действие — интеграл от функции Лагранжа по времени. Функция Лагранжа для классической механики вводится в виде разности между кинетической энергией и потенциальной энергией.
Гармони́ческий осцилля́тор — система, которая при выведении её из положения равновесия испытывает действие возвращающей силы F, пропорциональной смещению x:
,
Си́мволы Кристо́ффеля — коэффициенты координатного выражения аффинной связности, в частности, связности Леви-Чивиты. Названы в честь Эльвина Бруно Кристоффеля. Используются в дифференциальной геометрии, общей теории относительности и близких к ней теориях гравитации. Появляются в координатном выражении тензора кривизны. При этом сами символы тензорами не являются.
Ме́трика Шва́рцшильда — это единственное в силу теоремы Биркхофа сферически симметричное точное решение уравнений Эйнштейна без космологической константы в пустом пространстве. В частности, эта метрика достаточно точно описывает гравитационное поле уединённой невращающейся и незаряженной чёрной дыры и гравитационное поле снаружи от уединённого сферически симметричного массивного тела. Названа в честь Карла Шварцшильда, который первым её обнаружил в 1916 году.
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики.
Эллипти́ческий интегра́л — некоторая функция над полем действительных или комплексных чисел, которая может быть формально представлена в следующем виде:
,
Сферические функции представляют собой угловую часть семейства ортогональных решений уравнения Лапласа, записанную в сферических координатах. Они широко используются для изучения физических явлений в пространственных областях, ограниченных сферическими поверхностями и при решении физических задач, обладающих сферической симметрией. Сферические функции имеют большое значение в теории дифференциальных уравнений в частных производных и теоретической физике, в частности в задачах расчёта электронных орбиталей в атоме, гравитационного поля геоида, магнитного поля планет и интенсивности реликтового излучения.
Фазированной антенной решёткой называют антенную решётку, фазой токов (поля) в каждом из элементов которой можно управлять.
Гравитацио́нный потенциа́л — скалярная функция координат и времени, достаточная для полного описания гравитационного поля в классической механике. Имеет размерность квадрата скорости, обычно обозначается буквой . Гравитационный потенциал в данной точке пространства, задаваемой радиус-вектором , численно равен работе, которую выполняют гравитационные силы при перемещении пробного тела единичной массы по произвольной траектории из данной точки в точку, где потенциал принят равным нулю. Гравитационный потенциал равен отношению потенциальной энергии небольшого тела, помещённого в эту точку, к массе тела . Как и потенциальная энергия, гравитационный потенциал всегда определяется с точностью до постоянного слагаемого, обычно (но не обязательно) подбираемого таким образом, чтобы потенциал на бесконечности оказался нулевым. Например, гравитационный потенциал на поверхности Земли, отсчитываемый от бесконечно удалённой точки (если пренебречь гравитацией Солнца, Галактики и других тел), отрицателен и равен −62,7·106 м2/с2 (половине квадрата второй космической скорости).
В байесовской статистике априорная вероятность Джеффри, по имени Гарольда Джеффри — неинформативная (объективная) априорная вероятность в пространстве параметра, пропорциональная квадратному корню из детерминанта информации Фишера:
Уравне́ние Ланда́у — Ли́фшица — уравнение, описывающее движение намагниченности в приближении континуальной модели в твердых телах. Впервые введено Л. Д. Ландау и Е. М. Лифшицем в 1935 году.
Спонта́нное наруше́ние симме́три́и — способ нарушения симметрии физической системы, при котором исходное состояние и уравнения движения системы инвариантны относительно некоторых преобразований симметрии, но в процессе эволюции система переходит в состояние, для которого инвариантность относительно некоторых преобразований начальной симметрии нарушается. Спонтанное нарушение симметрии всегда связано с вырождением состояния с минимальной энергией, называемого вакуумом. Множество всех вакуумов имеет начальную симметрию, однако каждый вакуум в отдельности — нет. Например, шарик в жёлобе с двумя ямами скатывается из неустойчивого симметричного состояния в устойчивое состояние с минимальной энергией либо влево, либо вправо, разрушая при этом симметрию относительно изменения левого на правое.
Формула тангенса половинного угла — тригонометрическая формула, связывающая тангенс половинного угла с тригонометрическими функциями полного угла:
Обобщённые координаты — переменные состояния системы, описывающие конфигурацию динамической системы относительно некоторой эталонной конфигурации в аналитической механике, а конкретно исследовании динамики твёрдых тел в системе многих тел. Эти переменные должны однозначно определять конфигурацию системы относительно эталонной конфигурации. Обобщённые скорости — производные по времени обобщённых координат системы.
Диполя́рная, или дипо́льная, систе́ма координа́т — трёхмерная криволинейная ортогональная система координат, основанная на точечном (центральном) диполе, точнее, на его инвариантах преобразования координат.
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.