Измери́мые функции представляют естественный класс функций, связывающих пространства с выделенными алгебрами множеств, в частности измеримыми пространствами.
Случа́йный проце́сс в теории вероятностей — семейство случайных величин, индексированных некоторым параметром, чаще всего играющим роль времени или координаты.
Распределение вероятностей — это закон, описывающий область значений случайной величины и вероятности их исхода (появления).
Ма́рковский проце́сс — случайный процесс, эволюция которого после любого заданного значения временно́го параметра не зависит от эволюции, предшествовавшей , при условии, что значение процесса в этот момент фиксировано.
Пространство элементарных событий — множество всех различных исходов случайного эксперимента.
Закон нуля или единицы — утверждение в теории вероятностей о том, что всякое остаточное событие, то есть событие, наступление которого определяется лишь сколь угодно удалёнными элементами последовательности независимых случайных событий или случайных величин, имеет вероятность нуль или единица. Закон открыт Андреем Николаевичем Колмогоровым, поэтому иногда называется в его честь.
Ле́мма Фату́ — техническое утверждение, используемое при доказательстве различных теорем в функциональном анализе и теории вероятностей. Оно даёт одно из условий, при которых предел почти всюду сходящейся функциональной последовательности будет суммируемым.
В теории вероятностей два случайных события называются независимыми, если наступление одного из них не изменяет вероятность наступления другого. Аналогично, две случайные величины называют независимыми, если известное значение одной из них не дает информации о другой.
Равномерное распределение:
- Дискретное равномерное распределение — распределение, в котором случайная величина принимает конечное число значений с равными вероятностями.
- Непрерывное равномерное распределение — распределение случайной величины с постоянной плотность вероятности на интервале.
Случайный элемент — обобщение понятия случайной величины. Термин был введён, по-видимому, М.Фреше (1948), отмечавшим, что «развитие теории вероятностей и расширение области её приложений привели к необходимости перейти от схем, где (случайные) исходы опыта могут быть описаны числом или конечным набором чисел, к схемам, где исходы опыта представляют собой, например, векторы, функции, процессы, поля, ряды, преобразования, а также множества или наборы множеств».
Произведе́ние ме́р в функциональном анализе, теории вероятностей и смежных дисциплинах — формальный способ построить меру на декартовом произведении двух пространств с мерами.
Вы́борочное (эмпири́ческое) сре́днее — это приближение теоретического среднего распределения, основанное на выборке из него.
Аксиома́тика Колмого́рова — общепринятая аксиоматика для математического описания теории вероятностей. Первоначальный вариант предложен Андреем Николаевичем Колмогоровым в 1929 году, окончательная версия — в 1933 году. Аксиоматика Колмогорова позволила придать теории вероятностей стиль, принятый в современной математике.
Мартинга́л в теории случайных процессов — такой случайный процесс, что наилучшим предсказанием поведения процесса в будущем является его настоящее состояние.
Марковский момент времени — это случайная величина, не зависящая от будущего рассматриваемого случайного процесса.
Стационарность — свойство процесса не менять свои характеристики со временем. Имеет смысл в нескольких разделах науки.
Стохастическое дифференциальное уравнение (СДУ) — дифференциальное уравнение, в котором один член или более имеют стохастическую природу, то есть представляют собой стохастический (случайный) процесс. Таким образом, решения уравнения также оказываются стохастическими процессами. Наиболее известный и часто используемый пример СДУ — уравнение с членом, описывающим белый шум. Однако существуют и другие типы случайных флуктуаций, например скачкообразный процесс.
В математике теория момента остановки или марковский момент времени связана с проблемой выбора времени, чтобы принять определённое действие, для того чтобы максимизировать ожидаемое вознаграждение или минимизировать ожидаемые затраты. Проблема момента остановки может быть найдена в области статистики, экономики и финансовой математики. Самым ярким примером, относящимся к моменту остановки, является Задача о разборчивой невесте. Проблема момента остановки часто может быть указана в форме уравнения Беллмана и поэтому часто решается с помощью динамического программирования.