А́лгебра Ли — объект общей алгебры, являющийся векторным пространством с определенной на ней антикоммутативной билинейной операцией, удовлетворяющей тождеству Якоби. В общем случае алгебра Ли является неассоциативной алгеброй. Названа по имени норвежского математика Софуса Ли (1842—1899).
Пусть есть векторное пространство над полем .
Редуктивная группа — алгебраическая группа , для которой унипотентный радикал её компоненты единицы является тривиальным. Над незамкнутым полем редуктивность алгебраической группы определяется как редуктивность её над замыканием основного поля.
Инвариант Казимира — примечательный элемент центра универсальной обёртывающей алгебры алгебры Ли. Назван по имени голландского физика Хендрика Казимира. Примером является квадрат оператора момента импульса, который является инвариантом Казимира трёхмерной группы вращений. Операторы Казимира группы Пуанкаре имеют глубокий физический смысл, так как с их помощью определяются понятия массы и спина элементарных частиц.
Универсальная обёртывающая алгебра — ассоциативная алгебра, которая может быть построена для любой алгебры Ли, перенимающая многие важные свойства исходной алгебры, что позволяет применить более широкие средства для изучения исходной алгебры.
Число Коксетера — характеристика конечной неприводимой группы Коксетера. В случае, когда группа Коксетера является группой Вейля простой алгебры Ли , то говорят о числе Коксетера алгебры .
Группы Ри — это группы лиева типа над конечным полем, которые построил Ри из исключительных автоморфизмов диаграмм Дынкина, которые обращают направление кратных рёбер, что обобщает группы Судзуки, которые нашёл Судзуки, используя другой метод. Группы были последними открытыми в бесконечных семействах конечных простых групп.
Группа Лоренца является группой Ли симметрий пространства-времени в специальной теории относительности. Эта группа может быть реализована как набор матриц, линейных преобразований или унитарных операторов на некотором гильбертовом пространстве. Группа имеет различные представления. В любой релятивистски инвариантной физической теории эти представления как-то должны быть отражены. Сама физика должна быть сделана на их основе. Более того, специальная теория относительности вместе с квантовой механикой являются двумя физическими теориями, которые тщательно проверены и объединение этих двух теорий сводится к изучению бесконечномерных унитарных представлений группы Лоренца. Это имеет как историческую важность в основном течении в теоретической физике, так и связи с более спекулятивными теориями настоящего времени.
Максимальная компактная подгруппа K топологической группы G — это компактное пространство с индуцированной топологией, максимальное среди всех подгрупп. Максимальные компактные подгруппы играют важную роль в классификации групп Ли и, особенно, в классификации полупростых групп Ли. Максимальные компактные подгруппы групп Ли в общем случае не единственны, но единственны с точностью до сопряжённости — они являются существенно сопряжёнными.
Гиперболоидная модель, известная также как модель Минковского или лоренцева модель (Герман Минковский, Хендрик Лоренц), является моделью n-мерной геометрии Лобачевского, в которой каждая точка представлена точкой на верхней поверхности двуполостного гиперболоида в (n+1)-мерном пространстве Минковского а m-плоскости представлены пересечением (m+1)-плоскостей в пространстве Минковского с S+. Функция гиперболического расстояния в этой модели удовлетворяет простому выражению. Гиперболоидная модель n-мерного гиперболического пространства тесно связана с моделью Бельтрами — Клейна и дисковой моделью Пуанкаре, так как они являются проективными моделями в смысле, что группа движений является подгруппой проективной группы.
Поляриза́ция в теории представлений — максимальное вполне изотропное подпространство определённой кососимметрической билинейной формы на алгебре Ли. Понятие поляризации играет важную роль при построении неприводимых унитарных представлений некоторых классов групп Ли методом орбит, а также в гармоническом анализе на группах Ли и математической физике.
Характеристические классы — это далеко идущее обобщение таких количественных понятий элементарной геометрии, как степень плоской алгебраической кривой или сумма индексов особых точек векторного поля на поверхности. Более подробно они описаны в соответствующей статье. Теория Черна — Вейля позволяет представлять некоторые характеристические классы как выражения от кривизны.
Теорема Ли — Колчина — это теорема теории представлений линейных алгебраических групп. Теорема Ли является аналогом для линейных алгебр Ли.
Голоно́ми́я — один из инвариантов связности в расслоении над гладким многообразием, сочетающий свойства кривизны и монодромии, и имеющий важное значение как в геометрии, так и геометризированных областях естествознания, таких как теория относительности и теория струн. Обыкновенно речь идёт о голономии связностей в векторном расслоении, хотя в равной степени имеет смысл говорить о голономии связности в главном расслоении или даже голономии связности Эресманна в локально тривиальном топологическом расслоении.
Классификация Бьянки — классификация вещественных трёхмерных алгебр и групп Ли. Названа в честь Луиджи Бьянки, который доказал её в 1898 году.
В математике структурные константы или структурные коэффициенты алгебры над полем используются для явного указания произведения двух базисных векторов в алгебре в качестве линейной комбинации. Учитывая структурные константы, результирующее произведение является билинейным и может быть однозначно расширено на все векторы в векторном пространстве, таким образом, однозначно определяя произведение для алгебры.
Полупростая алгебра Ли — алгебра Ли, являющаяся прямой суммой простых алгебр Ли, то есть неабелевых алгебр Ли без нетривиальных идеалов.