В математике формула Стирлинга — формула для приближённого вычисления факториала и гамма-функции. Названа в честь Джеймса Стирлинга и Абрахама де Муавра, последний считается автором формулы.
Ряд Те́йлора — разложение функции в бесконечную сумму степенных функций. Частный случай разложения в ряд Тейлора в нулевой точке называется рядом Маклорена.
Гармони́ческий ряд — сумма, составленная из бесконечного количества членов, обратных последовательным числам натурального ряда:
- .
Фо́рмула Ва́ллиса — формула, выражающая число через бесконечное произведение рациональных дробей:
Телескопический ряд в математике — бесконечный ряд, чья сумма может быть легко получена, исходя из того, что при раскрытии скобок почти все слагаемые взаимно уничтожаются. Название дано по аналогии с трубой телескопа, который может уменьшить свою длину, сложившись несколько раз.
Знакочередующийся ряд натуральных чисел — знакочередующийся ряд, слагаемые которого по модулю представляют собой последовательные натуральные числа и имеют чередующийся знак: 1 − 2 + 3 − 4 + …. Частичная сумма с номером m этого ряда описывается выражением:
- .
Гауссова кривизна — мера искривления поверхности в окрестности какой-либо её точки. Гауссова кривизна является объектом внутренней геометрии поверхностей, то есть она не изменяется при изометрических изгибаниях.
Обра́тные гиперболи́ческие фу́нкции — семейство элементарных функций, определяющихся как обратные функции к гиперболическим функциям. Эти функции определяют площадь сектора единичной гиперболы x2 − y2 = 1 аналогично тому, как обратные тригонометрические функции определяют длину дуги единичной окружности x2 + y2 = 1. Для этих функций часто используются обозначения arcsinh, arcsh, arccosh, arcch и т. д., хотя такие обозначения являются, строго говоря, ошибочными, так как префикс arc является сокращением от arcus (дуга) и потому относится только к обратным тригонометрическим функциям, тогда как ar обозначает area — площадь. Более правильными являются обозначения arsinh, arsh и т. д. и названия обратный гиперболический синус, ареасинус и т. д. Также применяют названия гиперболический ареасинус, гиперболический ареакосинус и т. д., но слово «гиперболический» здесь является лишним, поскольку на принадлежность функции семейству обратных гиперболических функций однозначно указывает префикс «ареа». Иногда названия соответствующих функций записывают через дефис: ареа-синус, ареа-косинус и т. д.
В математике тождества Ньютона, также известные как формулы Ньютона — Жирара, задают соотношения между двумя типами симметрических многочленов, а именно между элементарными симметрическими многочленами и степенными суммами Ньютона. Для произвольного многочлена P они дают возможность выразить сумму k-х степеней всех корней P через коэффициенты P, без фактического нахождения корней. Эти тождества были открыты Исааком Ньютоном около 1666 года, и возможно, в ранних работах (1629) Альберта Жирара. Они находят применение во многих областях математики, в том числе в теории Галуа, теории инвариантов, теории групп, комбинаторике, а также в других науках, в том числе в общей теории относительности.
Теорема Евклида — основной элемент теории чисел. Она утверждает, что для любого конечного списка простых чисел найдётся простое число, не вошедшее в этот список.
Тригонометрические функции от матрицы — обобщения тригонометрических функций для квадратных матриц.
Натуральный логарифм 2 в десятичной системе счисления равен приблизительно
Убывающий факториал записывается с использованием символа Похгаммера и определяется как
Ряд обратных простых чисел расходится. То есть:
Асимптотический анализ — метод описания предельного поведения функций.
В 1760-х Иоганн Генрих Ламберт доказал, что число π иррационально, то есть не может быть представлено дробью a/b, где a — целое число, а b — ненулевое целое число. В XIX веке Чарльз Эрмит нашел еще одно доказательство, пользуясь только базовыми средствами математического анализа. В дальнейшем Мэри Картрайт, Айвен Нивен и Никола Бурбаки смогли упростить доказательство Эрмита, а Миклош Лацкович упростил доказательство Ламберта.