Эйлерова характеристика или характеристика Эйлера — Пуанкаре — целочисленная характеристика топологического пространства. Эйлерова характеристика пространства обычно обозначается .
Конформное отображение — непрерывное отображение, сохраняющее углы между кривыми, а значит и форму бесконечно малых фигур.
Уравне́ние состоя́ния идеа́льного га́за — формула, устанавливающая зависимость между давлением, молярным объёмом и абсолютной температурой идеального газа. Уравнение имеет вид:
- ,
Ковариантная производная — обобщение понятия производной для тензорных полей на многообразиях. Понятие ковариантной производной тесно связано с понятием аффинной связности.
Кривизна́ — собирательное название ряда характеристик, описывающих отклонение того или иного геометрического «объекта» от соответствующих «плоских» объектов.
Тензор Риччи, названный в честь итальянского математика Грегорио Риччи-Курбастро, задаёт один из способов измерения кривизны многообразия, то есть степени отличия геометрии многообразия от геометрии плоского евклидова пространства. Тензор Риччи, точно так же как метрический тензор, является симметричной билинейной формой на касательном пространстве риманова многообразия. Грубо говоря, тензор Риччи измеряет деформацию объёма, то есть степень отличия n-мерных областей n-мерного многообразия от аналогичных областей евклидова пространства (см. геометрический смысл тензора Риччи). Обычно обозначается или .
Пространственная форма — связное полное риманово многообразие постоянной секционной кривизны .
Вторая квадратичная форма поверхности ― квадратичная форма на касательном расслоении поверхности, которая, в отличие от первой квадратичной формы, определяет внешнюю геометрию поверхности в окрестности данной точки.
Поток Риччи — система дифференциальных уравнений в частных производных, описывающая деформацию римановой метрики на многообразии.
Шар — геометрическое тело; совокупность всех точек пространства, находящихся от центра на расстоянии, не больше заданного. Это расстояние называется радиусом шара. Шар образуется вращением полукруга вокруг его неподвижного диаметра. Этот диаметр называется осью шара, а оба конца указанного диаметра — полюсами шара. Поверхность шара называется сферой: замкнутый шар включает эту сферу, открытый шар — исключает.
Геодезическая кривизна кривой в римановой геометрии измеряет, насколько далеко кривая отличается от геодезической. Например, для 1D кривой на 2D поверхности, вложенной в 3D пространство, это кривизна кривой, спроецированной на плоскость, касательную к поверхности. Более обще, в заданном многообразии геодезическая кривизна ― это обычная кривизна кривой . Однако если кривая лежит в подмногообразии многообразия , геодезическая кривизна относится к кривизне в , и она отличается в общем виде от кривизны в объемлющем многообразии . (Объемлющая) кривизна кривой зависит от двух факторов ― кривизны подмногообразия в направлении , которая зависит только от направления кривой и кривизны в многообразии , которая является величиной второго порядка. Связь между ними ― . В частности, геодезические на имеют нулевую геодезическую кривизну («прямые»), так что .
Решётка — набор векторов евклидова пространства , образующий дискретную группу по сложению.
Ба́наховой алгеброй над комплексным или действительным полем называется ассоциативная алгебра, являющаяся при этом банаховым пространством. При этом умножение в ней должно быть согласовано с нормой:
- .
Кривизна римановых многообразий численно характеризует отличие римановой метрики многообразия от евклидовой в данной точке.
Сфери́ческий сегме́нт — поверхность, часть сферы, отсекаемая от неё некоторой плоскостью. Плоскость отсекает два сегмента: меньший сегмент называется также сферическим кругом. Если секущая плоскость проходит через центр сферы, то высота обоих сегментов равна радиусу сферы, и каждый из таких сферических сегментов называют полусферой.
Обобщенная формула Гаусса — Бонне — интегральная формула, выражающая эйлерову характеристику замкнутого чётномерного риманова многообразия через его кривизну. Это прямое обобщение формулы Гаусса — Бонне на высшие размерности.
Характеристические классы — это далеко идущее обобщение таких количественных понятий элементарной геометрии, как степень плоской алгебраической кривой или сумма индексов особых точек векторного поля на поверхности. Более подробно они описаны в соответствующей статье. Теория Черна — Вейля позволяет представлять некоторые характеристические классы как выражения от кривизны.
Голоно́ми́я — один из инвариантов связности в расслоении над гладким многообразием, сочетающий свойства кривизны и монодромии, и имеющий важное значение как в геометрии, так и геометризированных областях естествознания, таких как теория относительности и теория струн. Обыкновенно речь идёт о голономии связностей в векторном расслоении, хотя в равной степени имеет смысл говорить о голономии связности в главном расслоении или даже голономии связности Эресманна в локально тривиальном топологическом расслоении.