Уравнение диффузии представляет собой частный вид дифференциального уравнения в частных производных. Бывает нестационарным и стационарным.
Уравнение теплопроводности — дифференциальное уравнение в частных производных второго порядка, которое описывает распределение температуры в заданной области пространства и ее изменение во времени.
Разностная схема — это конечная система алгебраических уравнений, поставленная в соответствие какой-либо дифференциальной задаче, содержащей дифференциальное уравнение и дополнительные условия. Таким образом, разностные схемы применяются для сведения дифференциальной задачи, имеющей континуальный характер, к конечной системе уравнений, численное решение которых принципиально возможно на вычислительных машинах. Алгебраические уравнения, поставленные в соответствие дифференциальному уравнению, получаются применением разностного метода, что отличает теорию разностных схем от других численных методов решения дифференциальных задач.
Краевая задача — задача о нахождении решения заданного дифференциального уравнения, удовлетворяющего краевым (граничным) условиям в концах интервала или на границе области. Краевые задачи для гиперболических и параболических уравнений часто называют начально-краевыми или смешанными, потому что в них задаются не только граничные, но и начальные условия.
В математическом анализе частная производная — одно из обобщений понятия производной на случай функции нескольких переменных. Частная производная — это предел отношения приращения функции по выбранной переменной к приращению этой переменной, при стремлении этого приращения к нулю.
Ряд Те́йлора — разложение функции в бесконечную сумму степенных функций. Частный случай разложения в ряд Тейлора в нулевой точке называется рядом Маклорена.
Опера́тор — математическое отображение между множествами, в котором каждое из них наделено какой-либо дополнительной структурой. Понятие оператора используется в различных разделах математики для отличия от другого рода отображений ; точное значение зависит от контекста, например в функциональном анализе под операторами понимают отображения, ставящие в соответствие функции другую функцию.
Фу́нкция Гри́на — функция, используемая для решения линейных неоднородных дифференциальных уравнений с граничными условиями . Названа в честь английского математика Джорджа Грина, который первым развил соответствующую теорию в 1830-е годы.
Дифференциа́льное уравне́ние в ча́стных произво́дных — дифференциальное уравнение, содержащее неизвестные функции нескольких переменных и их частные производные.
Уравне́ние Пуассо́на — эллиптическое дифференциальное уравнение в частных производных, которое описывает
- электростатическое поле,
- гравитационное поле,
- стационарное поле температуры,
- поле давления,
- поле потенциала скорости в гидродинамике.
Дифференциа́льный опера́тор — оператор, определённый некоторым дифференциальным выражением и действующий в пространствах функций на дифференцируемых многообразиях или в пространствах, сопряжённых к пространствам этого типа.
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики.
Фо́рмула Кирхго́фа — аналитическое выражение для решения гиперболического уравнения в частных производных во всём трёхмерном пространстве. Методом спуска из него можно получить решения двумерного и одномерного уравнения.
Уравне́ние Гельмго́льца — это эллиптическое дифференциальное уравнение в частных производных:
Гипоэллиптический оператор — дифференциальный оператор в частных производных, фундаментальное решение которого принадлежит классу во всех точках пространства, за исключением начала координат.
Преобразование Мелера — Фока функции имеет вид:
Метод разделения переменных — метод решения дифференциальных уравнений, основанный на алгебраическом преобразовании исходного уравнения к равенству двух выражений, зависящих от разных переменных величин, причем одни из них являются функциями других.
Спектральные методы — это класс используемых в прикладной математике методик для численного решения некоторых дифференциальных уравнений, иногда использующих Быстрое преобразование Фурье. Идея заключается в представлении решения дифференциальных уравнений как суммы некоторых «базисных функций» с последующим выбором коэффициентов в сумме, наиболее удовлетворяющих заданным уравнениям.
Групповой анализ дифференциальных уравнений — раздел математики, изучающий свойства симметрии дифференциальных уравнений относительно различных преобразований зависимых и независимых переменных. Включает в себя методы и прикладные аспекты дифференциальной геометрии, теории групп и алгебр Ли, вариационного исчисления и является, в свою очередь, эффективным инструментом исследования в теории ОДУ, ДУЧП и математической физике.
Псевдодифференциальный оператор — расширение концепции дифференциального оператора в математическом анализе. Псевдодифференциальные операторы широко применяются в теории уравнений в частных производных и квантовой теории поля, например, в математических моделях, которые включают ультраметрические псевдодифференциальные уравнения в неархимедовом пространстве.