В общем случае функции параболического цилиндра — решения следующего уравнения
При выполнении линейной замены переменной в этом уравнении получается уравнение:
решения которого называются функциями Вебера и обозначаются
Функции являются решениями уравнения Вебера, причём при нецелом функции линейно независимы. Для всех функции также линейно независимы.
На практике часто пользуются и другими функциями параболического цилиндра — функциями Эрмита, являющихся решениями уравнения Эрмита, которое получается из заменой
Функции Эрмита обозначаются Общее решение уравнения
где — вырожденная гипергеометрическая функция.
При целом неотрицательном функция Эрмита совпадает с полиномом Эрмита. При целом отрицательном функция Эрмита выражается в замкнутом виде через функцию ошибок.
Рекуррентные соотношения и формулы дифференцирования
Рекуррентные соотношения
Формулы дифференцирования
Асимптотическое поведение
В начале координат
На бесконечности
Литература
Уиттекер, Ватсон. Курс современного анализа, 1963, том 2
Бейтмен, Эрдейи Высшие трансцендентные функции, том 2
H.F. Weber, "Über die Integration der partiellen Differentialgleichung " Math. Ann. , 1 (1869) pp. 1–36
Ссылки
Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables 1972, Dover: New York. chapter 19.
Тео́рия упру́гости — раздел механики сплошных сред, изучающий деформации упругих твёрдых тел, их поведение при статических и динамических нагрузках.
Уравнение Дира́ка — релятивистски инвариантное уравнение движения для биспинорного классического поля электрона, применимое также для описания других точечных фермионов со спином 1/2; установлено Полем Дираком в 1928 году.
Уравне́ние Шрёдингера — линейное дифференциальное уравнение в частных производных, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах.
Фу́нкция Гри́на — функция, используемая для решения линейных неоднородных дифференциальных уравнений с граничными условиями . Названа в честь английского математика Джорджа Грина, который первым развил соответствующую теорию в 1830-е годы.
Дифференциа́льное уравне́ние в ча́стных произво́дных — дифференциальное уравнение, содержащее неизвестные функции нескольких переменных и их частные производные.
Те́нзор эне́ргии-и́мпульса (ТЭИ) — симметричный тензор второго ранга (валентности), описывающий плотность и поток энергии и импульса полей материи и определяющий взаимодействие этих полей с гравитационным полем.
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики.
Эллипти́ческий интегра́л — некоторая функция над полем действительных или комплексных чисел, которая может быть формально представлена в следующем виде:
,
Ло́ренц-ковариа́нтность — свойство систем математических уравнений, описывающих физические законы, сохранять свой вид при применении преобразований Лоренца. Более точно, всякий физический закон должен представляться релятивистски инвариантной системой уравнений, то есть инвариантной относительно полной ортохронной неоднородной группы Лоренца. Принято считать, что этим свойством должны обладать все физические законы, и экспериментальных отклонений от него не обнаружено.
Тензор электромагнитного поля — это антисимметричный дважды ковариантный тензор, являющийся обобщением напряжённости электрического и индукции магнитного поля для произвольных преобразований координат. Он используется для инвариантной формулировки уравнений электродинамики, в частности, с его помощью можно легко обобщить электродинамику на случай наличия гравитационного поля.
Цилиндрические параболические координаты — система координат, обобщающая параболические координаты на трёхмерный случай путём добавления третьей (декартовой) координаты , то есть аппликаты.
Модифици́рованные фу́нкции Бе́сселя — это функции Бесселя от чисто мнимого аргумента.
Уравнения Прока — обобщение уравнений Максвелла, призванное описывать массивные частицы со спином 1. Уравнения Прока обычно записываются в виде
,
Фу́нкции Ха́нкеля (Га́нкеля) — линейные комбинации функций Бесселя первого и второго рода, а следовательно, решения уравнения Бесселя. Названы в честь немецкого математика Германа Ханкеля.
— функция Ханкеля первого рода;
— функция Ханкеля второго рода.
Функция Вебера — неэлементарная функция, которая является частным решением неоднородного уравнения Бесселя:
Функция Струве — неэлементарная функция, которая является частным решением неоднородного уравнения Бесселя:
Гауссов пучок — пучок электромагнитного излучения, в котором распределение электрического поля и излучения в поперечном сечении хорошо аппроксимируется функцией Гаусса. Когерентный световой пучок с гауссовым распределением поля имеет фундаментальное значение в теории волновых пучков. Этот пучок называют основной модой в отличие от других мод более высокого порядка.
Эллипсоидальные координаты — трёхмерная ортогональная система координат , являющаяся обобщением двумерной эллиптической системы координат. Данная система координат основана на использовании софокусных поверхностей второго порядка.
Изгиб пластин в теории упругости относится к расчёту деформаций в пластинах, под действием перпендикулярных к плоскости пластины внешних сил и моментов. Величину отклонения можно определить, решив дифференциальные уравнения соответствующей теории пластин в зависимости от допущений на малость тех или иных параметров. По этим прогибам можно рассчитать напряжения в пластине. При известных напряжениях можно использовать теорию разрушения, чтобы определить, нарушение целостности плиты при данной нагрузке. Деформация пластины является функцией двух координат, поэтому теория пластин формулируется в общем случае в терминах дифференциальных уравнений в двумерном пространстве. Также считается, что пластина изначально имеет плоскую форму.
Течение Хеле-Шоу определяется как течение жидкости или газа, происходящее между двумя параллельными плоскими пластинами, разделёнными узким зазором, удовлетворяющим определенным условиям. Оно названо в честь Генри Селби Хеле-Шоу, который изучал эту задачу в 1898 году. Различные проблемы механики жидкости можно аппроксимировать течениями Хеле-Шоу, поэтому исследование этих течений имеет важное значение. Аппроксимирование течением Хеле-Шоу особенно важно для микропотоков. Это связано с технологией производства, которая создает неглубокие плоские конфигурации, и обычно низкими числами Рейнольдса микропотоков.
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.