Топологи́ческое простра́нство — множество, для элементов которого определено, какие из них близки друг к другу. Является центральным понятием общей топологии.
Непреры́вное отображе́ние — отображение из одного пространства в другое, при котором близкие точки области определения переходят в близкие точки области значений.
Ме́ра мно́жества — числовая характеристика множества, интуитивно её можно понимать как массу множества при некотором распределении массы по пространству. Понятие меры множества возникло в теории функций вещественной переменной при развитии понятия интеграла.
В этом глоссарии приведены определения основных терминов, используемых в общей топологии. Курсивом выделены ссылки внутри глоссария.
Лине́йно свя́зное простра́нство — топологическое пространство, в котором любые две точки можно соединить непрерывной кривой.
Связное пространство — топологическое пространство, которое не может быть представлено как объединение двух или более непересекающихся непустых открытых подмножеств. Связность является важнейшим топологическим инвариантом и обобщает понятие линейной связности.
Компа́ктное простра́нство — определённый тип топологических пространств, обобщающий свойства ограниченности и замкнутости в евклидовых пространствах на произвольные топологические пространства.
Преде́льная то́чка множества в общей топологии — это такая точка, любая проколотая окрестность которой пересекается с этим множеством.
Откры́тое мно́жество — это множество, каждый элемент которого входит в него вместе с некоторой окрестностью. Например, внутренность шара является открытым множеством, а шар вместе с границей — не является открытым.
Категория Бэра — один из способов различать «большие» и «маленькие» множества. Подмножество топологического пространства может быть первой или второй категории Бэра.
База топологии — семейство открытых подмножеств топологического пространства , такое, что любое открытое множество в представимо в виде объединения элементов этого семейства.
Тополо́гия Зари́сского, или топология Зариского, — специальная топология, отражающая алгебраическую природу алгебраических многообразий. Названа в честь Оскара Зарисского и, начиная с 1950-х годов, занимает важное место в алгебраической геометрии.
Аксиомы отделимости — наборы дополнительных требований, налагаемых на топологические пространства, позволяющие изучать ограниченные классы топологических пространств со свойствами в той или иной степени близкими к метрическим пространствам. На предположении выполнения аксиом отделимости основано применение такой техники математического доказательства, как принцип разделимости.
Ограниченность в математике — свойство множеств, указывающее на конечность размера в контексте, определяемом категорией пространства.
Норма́льное простра́нство — топологическое пространство, удовлетворяющее аксиомам отделимости T1, T4, то есть такое топологическое пространство, в котором одноточечные множества замкнуты и любые два непересекающихся замкнутых множества отделимы окрестностями (то есть содержатся в непересекающихся открытых множествах).
Тривиа́льная тополо́гия в общей топологии — это топология, состоящая лишь из всего пространства и пустого множества. Логичнее, однако, называть эту топологию антидискретной, поскольку и дискретная, и антидискретная топологии — обе довольно тривиальные в общеязыковом смысле этого слова.
Леммой Гейне — Бореля называется следующий факт, играющий фундаментальную роль в анализе:
- Из всякой бесконечной системы интервалов, покрывающей отрезок числовой прямой, можно выбрать конечную подсистему, также покрывающую этот отрезок.
Произведение топологических пространств — это топологическое пространство, полученное, как множество, декартовым произведением исходных топологических пространств, и снабжённое естественной топологией, называемой топологией произведения или тихоновской топологией. Слово «естественная» здесь употребляется в смысле теории категорий и означает, что эта топология удовлетворяет некоторому универсальному свойству.