Гамма-функция — математическая функция. Была введена Леонардом Эйлером, а своим обозначением гамма-функция обязана Лежандру.
Тригонометри́ческие фу́нкции — элементарные функции, которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости длин сторон этих треугольников от острых углов при гипотенузе. Эти функции нашли широкое применение в самых разных областях науки. По мере развития математики определение тригонометрических функций было расширено, в современном понимании их аргументом может быть произвольное вещественное или комплексное число.
Ряд Те́йлора — разложение функции в бесконечную сумму степенных функций. Частный случай разложения в ряд Тейлора в нулевой точке называется рядом Маклорена.
Фу́нкции Бе́сселя в математике — семейство функций, являющихся каноническими решениями дифференциального уравнения Бесселя:
Уравне́ние Пуассо́на — эллиптическое дифференциальное уравнение в частных производных, которое описывает
- электростатическое поле,
- гравитационное поле,
- стационарное поле температуры,
- поле давления,
- поле потенциала скорости в гидродинамике.
Эллипти́ческий интегра́л — некоторая функция над полем действительных или комплексных чисел, которая может быть формально представлена в следующем виде:
- ,
Функция ошибок — неэлементарная функция, возникающая в теории вероятностей, статистике и теории дифференциальных уравнений в частных производных. Она определяется как
- .
Многочле́ны Эрми́та — определённого вида последовательность многочленов одной вещественной переменной. Многочлены Эрмита возникают в теории вероятностей, в комбинаторике, физике.
Интегралы Френеля S(x) и C(x) — это специальные функции, названные в честь Огюстена Жана Френеля и используемые в оптике. Они возникают при расчёте дифракции Френеля и определяются как
Уравне́ние Ке́плера описывает движение тела по эллиптической орбите в задаче двух тел и имеет вид:
Постоя́нная Катала́на — число, встречающееся в различных приложениях математики — в частности, в комбинаторике. Чаще всего обозначается буквой G, реже — K или C. Она может быть определена как сумма бесконечного знакочередующегося ряда:
Обра́тные гиперболи́ческие фу́нкции — семейство элементарных функций, определяющихся как обратные функции к гиперболическим функциям. Эти функции определяют площадь сектора единичной гиперболы x2 − y2 = 1 аналогично тому, как обратные тригонометрические функции определяют длину дуги единичной окружности x2 + y2 = 1. Для этих функций часто используются обозначения arcsinh, arcsh, arccosh, arcch и т. д., хотя такие обозначения являются, строго говоря, ошибочными, так как префикс arc является сокращением от arcus (дуга) и потому относится только к обратным тригонометрическим функциям, тогда как ar обозначает area — площадь. Более правильными являются обозначения arsinh, arsh и т. д. и названия обратный гиперболический синус, ареасинус и т. д. Также применяют названия гиперболический ареасинус, гиперболический ареакосинус и т. д., но слово «гиперболический» здесь является лишним, поскольку на принадлежность функции семейству обратных гиперболических функций однозначно указывает префикс «ареа». Иногда названия соответствующих функций записывают через дефис: ареа-синус, ареа-косинус и т. д.
Тета-функции — это специальные функции от нескольких комплексных переменных. Они играют важную роль во многих областях, включая теории абелевых многообразий, пространства модулей и квадратичных форм. Они применяются также в теории солитонов. После обобщения к алгебре Грассмана функции появляются также в квантовой теории поля.
Асимптотический анализ — метод описания предельного поведения функций.
В 1760-х Иоганн Генрих Ламберт доказал, что число π иррационально, то есть не может быть представлено дробью a/b, где a — целое число, а b — ненулевое целое число. В XIX веке Чарльз Эрмит нашел еще одно доказательство, пользуясь только базовыми средствами математического анализа. В дальнейшем Мэри Картрайт, Айвен Нивен и Никола Бурбаки смогли упростить доказательство Эрмита, а Миклош Лацкович упростил доказательство Ламберта.
Профиль Фойгта или распределение Фойгта представляет собой распределение вероятностей, полученное путём свёртки распределения Коши — Лоренца и распределения Гаусса. Он часто используется при анализе данных спектроскопии или дифракции.