Стоимость под риском — стоимостная мера риска. Это выраженная в денежных единицах оценка величины, которую не превысят ожидаемые в течение данного периода времени потери с заданной вероятностью.
Распределе́ние Стью́дента в теории вероятностей — это однопараметрическое семейство абсолютно непрерывных распределений. Уильям Сили Госсет первым опубликовал работы, посвящённые этому распределению, под псевдонимом «Стьюдент».
Ме́тод моме́нтов — метод оценки неизвестных параметров распределений в математической статистике и эконометрике, основанный на предполагаемых свойствах моментов. Идея метода заключается в замене истинных соотношений выборочными аналогами.
Довери́тельный интерва́л — термин, используемый в математической статистике при интервальной оценке статистических параметров, более предпочтительной при небольшом объёме выборки, чем точечная. Доверительным называют интервал, который покрывает неизвестный параметр с заданной надёжностью.
Робастность — свойство статистического метода, характеризующее независимость влияния на результат исследования различного рода выбросов, устойчивости к помехам. Робастный метод — метод, направленный на выявление выбросов, снижение их влияния или исключение их из выборки.
Оптимальны́й приём сигна́лов — область радиотехники, в которой обработка принимаемых сигналов осуществляется на основе методов математической статистики.
Статистика — измеримая числовая функция от выборки, не зависящая от неизвестных параметров распределения элементов выборки.
Авторегрессионная (AR-) модель (англ. autoregressive model) — модель временных рядов, в которой значения временного ряда в данный момент линейно зависят от предыдущих значений этого же ряда. Авторегрессионный процесс порядка p (AR(p)-процесс) определяется следующим образом
Риск — математическое ожидание функции потерь вследствие принятия решения.
В математической статистике и теории принятия решений байесовская оценка решения — это статистическая оценка, минимизирующая апостериорное математическое ожидание функции потерь. Иначе говоря, она максимизирует апостериорное математическое ожидание функции полезности. В рамках теории Байеса данную оценку можно определить как оценку апостериорного максимума.
Теория оценивания — раздел математической статистики, решающий задачи оценивания непосредственно не наблюдаемых параметров сигналов или объектов наблюдения на основе наблюдаемых данных. Для решения задач оценивания применяется параметрический и непараметрический подход. Параметрический подход используется, когда известна математическая модель исследуемого объекта и характер возмущений и требуется лишь определить в ней неизвестные параметры. В этом случае используются метод наименьших квадратов, метод максимального правдоподобия и метод моментов. Непараметрический подход используется для изучения объектов неизвестной структуры и с неизвестными возмущениями. Теория оценивания применяется в приборах для физических и других измерений, при моделировании физических, экономических, биологических и других процессов.
В математике теория момента остановки или марковский момент времени связана с проблемой выбора времени, чтобы принять определённое действие, для того чтобы максимизировать ожидаемое вознаграждение или минимизировать ожидаемые затраты. Проблема момента остановки может быть найдена в области статистики, экономики и финансовой математики. Самым ярким примером, относящимся к моменту остановки, является Задача о разборчивой невесте. Проблема момента остановки часто может быть указана в форме уравнения Беллмана и поэтому часто решается с помощью динамического программирования.
Дизайн механизмов — область исследования в экономической теории и теории игр, которая представляет собой подход создания механизмов и стимулов для достижения желаемых целей, где игроки действуют рационально, а действия экономических субъектов приводят к решению, оптимальному для функции социального выбора. Этот подход впервые был предложен Леонидом Гурвичем в 1960 году.
Онлайновое машинное обучение — это метод машинного обучения, в котором данные становятся доступными в последовательном порядке и используются для обновления лучшего предсказания для последующих данных, выполняемого на каждом шаге обучения. Метод противоположен пакетной технике обучения, в которой лучшее предсказание генерируется за один раз, исходя из полного тренировочного набора данных. Онлайновое обучение является общей техникой, используемой в областях машинного обучения, когда невозможна тренировка по всему набору данных, например, когда возникает необходимость в алгоритмах, работающих с внешней памятью. Метод используется также в ситуациях, когда алгоритму приходится динамически приспосабливать новые схемы в данных или когда сами данные образуются как функция от времени, например, при предсказании цен на фондовом рынке. Алгоритмы онлайнового обучения могут быть склонны к катастрофическим помехам, проблеме, которая может быть решена с помощью подхода пошагового обучения.
Коэффицие́нт Ба́йеса — байесовская альтернатива проверке статистических гипотез. Байесовское сравнение моделей — метод выбора моделей на основе коэффициентов Байеса. Обсуждаемые модели являются статистическими моделями. Целью коэффициента Байеса является количественное выражение поддержки модели по сравнению с другой моделью, независимо от того, верны модели или нет. Техническое определение понятия «поддержка» в контексте байесовского вывода дано ниже.
Толерантный интервал — термин, используемый в математической статистике при определении на основе выборочных данных интервала, который при заданном доверительным уровне содержит заданную вероятностную меру неизвестной функции распределения.
Динамические стохастические модели общего равновесия — современные макроэкономические модели, параметры которых основаны на моделировании поведения экономических агентов на микроуровне, предусматривающие также моделирование различных стохастических «шоков».
L-распределе́ние Сосновского — распределение случайной вещественной величины, принимающей значения из отрезка [0,1], характеризующееся указанной ниже функцией распределения. Данное распределение было предложено более 25 лет назад для анализа накопления усталостных повреждений при нерегулярном нагружении. За это время выяснилось, что, оно не является частным случаем никакого другого известного распределения и имеет важное значение в механике повреждений.
CRYSTALS-Dilithium — один из алгоритмов постквантовой криптографии, основанный на задачах теории решёток. Представлен в 2018 на семинаре CHES, опубликован в 2021 году, авторы — Лео Дюкас, Айке Кильц, Танскред Лепуан, Вадим Любашевский, Петер Швабе, Грегор Зайлер, Дамиан Стеле.