Уравнение диффузии представляет собой частный вид дифференциального уравнения в частных производных. Бывает нестационарным и стационарным.
Уравнение теплопроводности — дифференциальное уравнение в частных производных второго порядка, которое описывает распределение температуры в заданной области пространства и ее изменение во времени.
Уравнение Дира́ка — релятивистски инвариантное уравнение движения для биспинорного классического поля электрона, применимое также для описания других точечных фермионов со спином 1/2; установлено Полем Дираком в 1928 году.
Теоре́ма Нётер или первая теорема Нётер утверждает, что каждой дифференцируемой симметрии действия для физической системы с консервативными силами соответствует закон сохранения. Теорема была доказана математиком Эмми Нётер в 1915 году и опубликована в 1918 году. Действие для физической системы представляет собой интеграл по времени функции Лагранжа, из которого можно определить поведение системы согласно принципу наименьшего действия. Эта теорема применима только к непрерывным и гладким симметриям над физическим пространством.
Функция Мёбиуса — мультипликативная арифметическая функция, применяемая в теории чисел и комбинаторике, названа в честь немецкого математика Мёбиуса, который впервые рассмотрел её в 1831 году.
В области численного анализа число обусловленности функции по отношению к аргументу измеряет, насколько может измениться выходное значение функции при небольшом изменении входного аргумента. Это используется, чтобы измерить, насколько чувствительна функция к изменениям или ошибкам на входе, и на сколько ошибка на выходе является результатом ошибки на входе. Очень часто решается обратная задача — зная , найти , и поэтому должно использоваться число обусловленности (локальной) обратной задачи. В линейной регрессии число обусловленности может использоваться в качестве диагностики для мультиколлинеарности.
Це́пь Ма́ркова — последовательность случайных событий с конечным или счётным числом исходов, характеризующаяся тем свойством, что, говоря нестрого, при фиксированном настоящем будущее независимо от прошлого. Названа в честь А. А. Маркова (старшего), который впервые ввёл это понятие в работе 1906 года.
Зада́ча Коши́ — одна из основных задач теории дифференциальных уравнений ; состоит в нахождении решения (интеграла) дифференциального уравнения, удовлетворяющего так называемым начальным условиям.
Ме́ра Лебе́га на — мера, обобщающая понятия длины отрезка, площади фигуры и объёма тела на произвольное -мерное евклидово пространство. Говоря более формально, мера Лебега является продолжением меры Жордана на более широкий класс множеств.
Интеграл Лебе́га — это обобщение интеграла Римана на более широкий класс функций.
Теоре́ма Лебе́га о мажори́руемой сходи́мости в функциональном анализе, теории вероятностей и смежных дисциплинах — это теорема, утверждающая, что если сходящаяся почти всюду последовательность измеримых функций может быть ограничена по модулю сверху интегрируемой функцией, то все члены последовательности, а также предельная функция тоже интегрируемы. Более того, интеграл последовательности сходится к интегралу её предела.
Ме́тод максима́льного правдоподо́бия или метод наибольшего правдоподобия в математической статистике — это метод оценивания неизвестного параметра путём максимизации функции правдоподобия. Основан на предположении о том, что вся информация о статистической выборке содержится в функции правдоподобия. Метод максимального правдоподобия был проанализирован, рекомендован и значительно популяризирован Р. Фишером между 1912 и 1922 годами.
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики.
Обра́тные тригонометри́ческие фу́нкции — математические функции, являющиеся обратными к тригонометрическим функциям. К обратным тригонометрическим функциям обычно относят шесть функций:
- арксинус
- арккосинус
- арктангенс
- арккотангенс
- арксеканс
- арккосеканс
Уравнения Прока — обобщение уравнений Максвелла, призванное описывать массивные частицы со спином 1. Уравнения Прока обычно записываются в виде
- ,
Алгоритм Ленстры — Ленстры — Ловаса — алгоритм редукции базиса решётки, разработанный Арьеном Ленстрой, Хендриком Ленстрой и Ласло Ловасом в 1982 году. За полиномиальное время алгоритм преобразует базис на решётке в кратчайший почти ортогональный базис на этой же решётке. По состоянию на 2019 год алгоритм Ленстры — Ленстры — Ловаса является одним из самых эффективных для вычисления редуцированного базиса в решётках больших размерностей. Он актуален прежде всего в задачах, сводящихся к поиску кратчайшего вектора решётки.
Уравнение электромагнитной волны — дифференциальное уравнение в частных производных второго порядка, которое описывает распространение электромагнитных волн через среду или в вакуумe. Это трёхмерная форма волнового уравнения. Однородная форма уравнения, записанная в терминах либо электрического поля E, либо магнитного поля B, имеет вид: