Уравне́ние Шрёдингера — линейное дифференциальное уравнение в частных производных, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах.
Диверге́нция — дифференциальный оператор, отображающий векторное поле на скалярное, который определяет, «насколько расходится входящее и исходящее из малой окрестности данной точки поле», точнее, насколько расходятся входящий и исходящий потоки.
Ро́тор, рота́ция или вихрь — векторный дифференциальный оператор над векторным полем.
Вариацио́нное исчисле́ние — раздел анализа, в котором изучаются вариации функционалов. Наиболее типичная задача — найти функцию, на которой заданный функционал достигает экстремального значения.
В математике и теоретической физике функциональная производная является обобщением производной по направлению. Разница заключается в том, что для последней дифференцирование производится в направлении какого-нибудь вектора, а для первой речь идёт о функции. Оба эти понятия можно рассматривать как обобщение обычного дифференциального исчисления.
Уравне́ние Пуассо́на — эллиптическое дифференциальное уравнение в частных производных, которое описывает
- электростатическое поле,
- гравитационное поле,
- стационарное поле температуры,
- поле давления,
- поле потенциала скорости в гидродинамике.
Электростатическое поле — поле, созданное неподвижными в пространстве и неизменными во времени электрическими зарядами . Электрическое поле представляет собой особый вид материи, связанный с электрическими зарядами и передающий действия зарядов друг на друга.
Уравнение Ланжевена — стохастическое дифференциальное уравнение, описывающее броуновское движение.
Парадо́кс Кле́йна в графе́не — прохождение любых потенциальных барьеров без обратного рассеяния под прямым углом. Эффект связан с тем, что спектр носителей тока в графене линейный и квазичастицы подчиняются уравнению Дирака для графена. Эффект предсказан теоретически в 2006 году для прямоугольного барьера.
Как и для криволинейных интегралов, существуют два рода поверхностных интегралов.
Закон соответственных состояний гласит, что все вещества подчиняются одному уравнению состояния, если это уравнение выразить через приведённые переменные. Этот закон является приближённым и позволяет достаточно просто оценивать свойства плотного газа или жидкости с точностью порядка 10—15 %. Первоначально был сформулирован Ван дер Ваальсом в 1873 году.
Спонта́нное наруше́ние симме́три́и — способ нарушения симметрии физической системы, при котором исходное состояние и уравнения движения системы инвариантны относительно некоторых преобразований симметрии, но в процессе эволюции система переходит в состояние, для которого инвариантность относительно некоторых преобразований начальной симметрии нарушается. Спонтанное нарушение симметрии всегда связано с вырождением состояния с минимальной энергией, называемого вакуумом. Множество всех вакуумов имеет начальную симметрию, однако каждый вакуум в отдельности — нет. Например, шарик в жёлобе с двумя ямами скатывается из неустойчивого симметричного состояния в устойчивое состояние с минимальной энергией либо влево, либо вправо, разрушая при этом симметрию относительно изменения левого на правое.
Атом гелия — это атом химического элемента гелия. Гелий состоит из двух электронов, связанных с ядром, содержащим два протона вместе с одним (3He) или двумя (4He) нейтронами, удерживаемыми сильным взаимодействием. В отличие от водорода, замкнутой формы решения уравнения Шрёдингера для атома гелия не найдено. Однако различные приближения, такие как метод Хартри — Фока, можно использовать для оценки энергии основного состояния и волновой функции атома.
Во многих случаях для предсказания поведения реального газа допустимо использовать модель идеального газа. При работе с данной моделью широко применяются термодинамические потенциалы, которые в данном частном случае приобретают более простой для расчётов вид.
Round5 — это постквантовая система шифрования с открытым ключом, основанная на общей задаче обучения с округлением. Данная система является альтернативой для алгоритма RSA и эллиптических кривых и предназначена для защиты от квантовых компьютеров. Round5 состоит из алгоритмов для реализации механизма инкапсуляции ключей и схемы шифрования с открытым ключом. Данные алгоритмы попадают под категорию криптография на решётках.
Метод функции Грина — метод решения линейного дифференциального уравнения, позволяет посредством нахождения соответствующей оператору этого уравнения функции Грина практически напрямую получить частное решение. Эффективность определяется возможностью записать функцию Грина в явном виде.