Изоморфи́зм — соотношение между математическими объектами, выражающее общность их строения; используется в разных разделах математики и в каждом из них определяется в зависимости от структурных свойств изучаемых объектов. Обычно изоморфизм определяется для множеств, наделённых некоторой структурой, например, для групп, колец, линейных пространств; в этом случае он определяется как обратимое отображение (биекция) между двумя множествами со структурой, сохраняющее эту структуру, то есть показывающее, что объекты «одинаково устроены» в смысле этой структуры. Если между объектами существует изоморфизм, то они называются изоморфными. Изоморфизм всегда задаёт отношение эквивалентности на классе таких структур.
В этой статье приведены основные термины, используемые в теории групп. Курсив обозначает внутреннюю ссылку на данный глоссарий. В конце приводится таблица основных обозначений, применяемых в теории групп.
Норма́льная подгру́ппа — подгруппа особого типа, левый и правый смежные классы по которой совпадают. Такие группы важны, поскольку позволяют строить факторгруппу.
Коммутант в общей алгебре — подсистема алгебр, содержащих групповую структуру, показывающая степень некоммутативности групповой операции.
Изоморфизм групп — взаимно-однозначное соответствие между элементами двух групп, сохраняющее групповые операции. Если существует изоморфизм между двумя группами, группы называются изоморфными. С точки зрения теории групп изоморфные группы имеют одни и те же свойства и их можно не различать.
Эндоморфизм — морфизм объекта категории в себя, в контексте универсальной алгебры — гомоморфизм, отображающий алгебраическую систему в себя.
Автоморфизм — изоморфизм между математическим объектом и им самим; отображение, изменяющее объект с сохранением всех его изначальных свойств. Множество всех автоморфизмов объекта образует группу автоморфизмов, которую можно рассматривать как обобщение группы симметрий объекта.
Представле́ние гру́ппы — вообще говоря, любое действие группы. Однако чаще всего под представлением группы понимается линейное представление группы, то есть действие группы на векторном пространстве. Иными словами, представление группы — это гомоморфизм заданной группы в группу невырожденных линейных преобразований векторного пространства.
Присоединённое представление группы Ли — линейное представление группы Ли на своей алгебре Ли. Обычно обозначается .
Редуктивная группа — алгебраическая группа , для которой унипотентный радикал её компоненты единицы является тривиальным. Над незамкнутым полем редуктивность алгебраической группы определяется как редуктивность её над замыканием основного поля.
Внутренний автоморфизм — это вид автоморфизма группы, определённый в терминах фиксированного элемента группы, называемого сопрягающим элементом. Формально, если G — группа, а a — элемент группы G, то внутренний автоморфизм, определённый элементом a — это отображение f из G в себя, определённое для всех x из G по формуле
- f(x) = a−1xa.
Автоморфизм группы — биективный гомоморфизм группы на себя.
Основная теорема теории Галуа — теорема о расширениях полей определённого вида, ключевой результат теории Галуа.
Дистанционно-транзитивный граф — граф, в котором любая упорядоченная пара вершин переводится в любую другую упорядоченную пару вершин с тем же расстоянием между вершинами одним из автоморфизмов графа.
Центр группы в теории групп — множество всех таких элементов данной группы, которые коммутируют со всеми её элементами:
- .
Группа Григорчука — первый пример конечнопорождённой группы промежуточного роста.
Говорят, что группа почти проста, если она содержит неабелеву простую группу и содержится в группе автоморфизмов этой простой группы. В символьной записи группа A почти проста, если существует простая группа S, такая, что .
Теорема О'Нэна – Скотта — это одна из наиболее влиятельных теорем теории группы перестановок. Столь полезной эту теорему делает классификация простых конечных групп. В исходном виде теорема была о максимальных подгруппах симметрической группы. Она появилась как дополнение к статье Леонарда Скотта, написанной для конференции в Санта-Круз по конечным группам в 1979 со сноской, что Майкл О'Нэн независимо доказал тот же результат.