Пространство Кала́би — Яу — компактное комплексное многообразие с кэлеровой метрикой, для которой тензор Риччи обращается в ноль. В теории суперструн иногда предполагают, что дополнительные измерения пространства-времени принимают форму 6-мерного многообразия Калаби — Яу, что привело к идее зеркальной симметрии. Название было придумано в 1985 году, в честь Эудженио Калаби, который впервые предположил, что такие размерности могут существовать, и Яу Шинтуна, который в 1978 году доказал гипотезу Калаби.
Функтор — особый тип отображений между категориями. Его можно понимать как отображение, сохраняющее структуру. Функторы между малыми категориями являются морфизмами в категории малых категорий. Совокупность всех категорий не является категорией в обычном смысле, так как совокупность её объектов не является классом. Один из способов преодолеть подобные теоретико-множественные трудности — добавление в ZFC независимой от неё аксиомы о существовании недостижимых кардиналов.
Бордизм, также бордантность — термин топологии, употребляющийся самостоятельно или в составе стандартных словосочетаний в нескольких родственных смыслах, почти во всех из них вместо бордизм раньше говорили о кобордизмах, старая терминология тоже сохранилась.
Ориента́ция — обобщение и формализация понятий направления обхода и направления на прямой на более сложные геометрические объекты, многообразия, векторные расслоения и так далее.
Класс Понтрягина — характеристический класс, определенный для вещественных векторных расслоений. Понятие введено в 1947 году советским математиком Л. С. Понтрягиным.
Число Понтрягина ― характеристическое число, определенное для вещественных замкнутых многообразий и принимающее рациональные значения.
Теория гомоло́гий — раздел математики, который изучает конструкции некоторых топологических инвариантов, называемых группами гомологий и группами когомологий. Также теориями гомологий называют конкретные конструкции групп гомологий.
Пучок — структура, используемая для установления отношений между локальными и глобальными свойствами или характеристиками некоторого математического объекта. Пучки играют значительную роль в топологии, дифференциальной геометрии и алгебраической геометрии, но также применяются в теории чисел, анализе и теории категорий.
Гипотеза Ходжа сформулирована в 1941 году Вильямом Ходжем и состоит в том, что для типов пространств, называемых проективными алгебраическими многообразиями, так называемые циклы Ходжа являются комбинациями объектов, имеющих геометрическую интерпретацию, — алгебраических циклов.
Фёдор Алексеевич Богомолов — советский и американский математик, известный своими работами по алгебраической геометрии и теории чисел.
Класс Тодда — это некоторая конструкция, которая ныне считается частью теории характеристических классов в алгебраической топологии. Класс Тодда векторного расслоения можно определить посредством теории классов Чженя и они встречаются там, где классы Чженя существуют — в первую очередь в дифференциальной топологии, теории комплексных многообразий и алгебраической геометрии. Грубо говоря, класс Тодда действует противоположно классу Чженя и относится к нему как конормальное расслоение относится к нормальному расслоению.
Классы Чженя — это характеристические классы, ассоциированные с комплексными векторными расслоениями.
Расслоение на окружности — это расслоение, в котором слоями являются окружности .
K-теория — математическая теория, изучающая кольца, порождённые векторными расслоениями над топологическими пространствами или схемами. В алгебраической топологии эта обобщённая теория когомологий называется топологической K-теорией. В алгебре и алгебраической геометрии соответствующий раздел называется алгебраической K-теорией. Также она играет важную роль в операторных алгебрах и её можно рассматривать как теорию определенных видов инвариантов больших матриц.
Характеристические классы — это далеко идущее обобщение таких количественных понятий элементарной геометрии, как степень плоской алгебраической кривой или сумма индексов особых точек векторного поля на поверхности. Более подробно они описаны в соответствующей статье. Теория Черна — Вейля позволяет представлять некоторые характеристические классы как выражения от кривизны.
В математике, топологическая K-теория является подразделом алгебраической топологии. В начале своего существования она применялась для изучения векторных расслоений на топологических пространствах с помощью идей, признанных в настоящее время частью (общей) K-теории, введенной Александром Гротендиком. Ранние работы по топологической K-теории принадлежат Майклу Атья и Фридриху Хирцебруху.
В дифференциальной геометрии, спинорное расслоение — локально тривиальное расслоение специального вида над (псевдо)римановым многообразием. Сечение спинорного расслоения, называемое спинорным полем, моделирует в физике фермионное поле в произвольном пространстве.