Характеристический многочлен матрицы — многочлен, определяющий её собственные значения.
Вихрь Мерсе́нна — генератор псевдослучайных чисел (ГПСЧ), алгоритм, разработанный в 1997 году японскими учёными Макото Мацумото и Такудзи Нисимура. Вихрь Мерсенна генерирует псевдослучайные последовательности чисел с периодом, равным одному из простых чисел Мерсенна, отсюда этот алгоритм и получил своё название, и обеспечивает быструю генерацию высококачественных по критерию случайности псевдослучайных чисел.
Линейное дифференциальное уравнение с постоянными коэффициентами — обыкновенное дифференциальное уравнение вида:
В математике квадра́тная ма́трица — это матрица, у которой число строк совпадает с числом столбцов, и это число называется порядком матрицы. Любые две квадратные матрицы одинакового порядка можно складывать и умножать.
Со́бственный ве́ктор — понятие в линейной алгебре, определяемое для произвольного линейного оператора как ненулевой вектор, применение к которому оператора даёт коллинеарный вектор — тот же вектор, умноженный на некоторое скалярное значение. Скаляр, на который умножается собственный вектор под действием оператора, называется собственным числом линейного оператора, соответствующим данному собственному вектору. Одним из представлений линейного оператора является квадратная матрица, поэтому собственные векторы и собственные значения часто определяются в контексте использования таких матриц.
В математике многочлены Лаге́рра, названные в честь Эдмона Лагерра (1834—1886), являются каноническими решениями уравнения Лагерра:
В линейной алгебре, фробениусовой нормальной формой линейного оператора А называется каноническая форма его матрицы, соответствующая минимальному разложению линейного пространства в прямую сумму инвариантных относительно А подпространств, которые могут быть получены как линейная оболочка некоторого вектора и его образов под действием А. Она будет блочно-диагональной матрицей, состоящей из фробениусовых клеток вида
Регистр сдвига с линейной обратной связью — регистр сдвига битовых слов, у которого значение входного (вдвигаемого) бита равно линейной булевой функции от значений остальных битов регистра до сдвига. Может быть организован как программными, так и аппаратными средствами. Применяется для генерации псевдослучайных последовательностей битов, что находит применение, в частности, в криптографии.
В линейной алгебре сопровожда́ющей ма́трицей унитарного многочлена
В математике последовательностью ортогональных многочленов называют бесконечную последовательность действительных многочленов
- ,
Аннули́рующий многочле́н для ма́трицы — многочлен , значение которого для данной квадратной матрицы равно нулевой матрице. Теорема Гамильтона-Кэли утверждает, что значение характеристического многочлена для квадратной матрицы равно нулевой матрице, а значит для каждой квадратной матрицы существует, по крайней мере, один аннулирующий многочлен степени, совпадающей с порядком матрицы.
Теоре́ма Га́мильтона — Кэ́ли — классическая теорема линейной алгебры, утверждает, что любая квадратная матрица удовлетворяет своему характеристическому уравнению. Названная в честь Уильяма Гамильтона и Артура Кэли.
Численные (вычислительные) методы — методы решения математических задач в численном виде.
В теории чисел числами Перрена называются члены линейной рекуррентной последовательности:
- P(0) = 3, P(1) = 0, P(2) = 2,
Линейные динамические системы — это динамические системы, эволюция которых во времени описывается линейным дифференциальным уравнением. В то время как динамические системы в целом не имеют замкнутой формы решения, линейные динамические системы могут быть решены точно, и у них есть большой набор математических свойств. Линейные системы также могут быть использованы для понимания поведения общих динамических систем, путём расчета точек равновесия системы и приближения её в виде линейной системы вокруг каждой такой точки.
Алгоритм вычисления собственных значений — алгоритм, позволяющий определить собственные значения и собственные векторы заданной матрицы. Создание эффективных и устойчивых алгоритмов для этой задачи является одной из ключевых задач вычислительной математики.
Алгоритм Видемана — алгоритм, позволяющий получить решение системы линейных уравнений над конечным полем . Был предложен Дугласом Видеманом в 1986 году. В течение некоторого времени после опубликования статьи, алгоритм не получил большой поддержки и считался пригодным только для получения наилучших оценок сложности. Но позже алгоритмы Видемана были реализованы на компьютере и использовались, например, для поиска разложения многочленов на множители над конечными полями.