Онлайн-энциклопедия целочисленных последовательностей — сетевая энциклопедия, содержащая записи о последовательностях целых чисел, таких как числа Фибоначчи, числа Белла, числа Каталана, простые числа. Наполняется по принципу вики с премодерацией.
30 (тридцать) — натуральное число, расположенное между числами 29 и 31. Оно не является простым числом, а относительно последовательности простых чисел расположено также между 29 и 31.
31 — натуральное число между 30 и 32.
97 — натуральное число, расположенное между числами 96 и 98.
121 — натуральное число, расположенное между числами 120 и 122.
Фигурные числа — числа, которые можно представить с помощью геометрических фигур. Это историческое понятие восходит к пифагорейцам, которые развивали алгебру на геометрической основе и представляли любое положительное целое число в виде набора точек на плоскости. Отголоском этого подхода остались выражения «возвести число в квадрат» или «в куб».
169 — натуральное число, расположенное между числами 168 и 170.
257 — натуральное число, расположенное между числами 256 и 258. Оно является 55-м простым числом, а относительно их последовательности расположено между 251 и 263.
- 257 день в году — 14 сентября [значимость факта?].
Числа Деланнуа (или числа Деланоя; фр. Delannoy) D(a, b) в комбинаторике описывают количества путей из левого нижнего угла прямоугольной решётки (a, b) в противоположный по диагонали угол, используя только ходы вверх, вправо или вверх-вправо («ходом короля»). В a-мерном клеточном автомате D(a,b) задают количество клеток в окрестности фон Неймана радиуса b, последовательность A008288 в OEIS; количество клеток на поверхности окрестности задет последовательность A266213 в OEIS. Названы в честь французского математика Анри Огюста Деланнуа.
В математике число торта, обозначаемое Cn, — это максимальное число областей, на которое может быть поделён трёхмерный куб количеством n плоскостей. Число торта называется именно так, потому что можно представить, что плоскости — это разрезы, сделанные ножом в торте, имеющем форму куба.
563 — натуральное число, расположенное между числами 562 и 564. Оно является 103-м простым числом, а относительно их последовательности расположено между 557 и 569.
В теории чисел праймориальным простым числом называется простое число вида pn# ± 1, где pn# — праймориал pn.
- pn# − 1 является простым для n = 2, 3, 5, 6, 13, 24, … последовательность A057704 в OEIS
- pn# + 1 является простым для n = 1, 2, 3, 4, 5, 11, … последовательность A014545 в OEIS
Псевдопросты́е чи́сла Ферма́ — составные числа, проходящие тест Ферма. Названы в честь французского математика Пьера Ферма. В теории чисел псевдопростые числа Ферма составляют важнейший класс псевдопростых чисел.
Пятиугольные числа — один из классов классических многоугольных чисел. Последовательность пятиугольных чисел имеет вид :
- 1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330, 376, 425, 477…
Совершенное тотиентное число — это целое число, которое равно сумме его итерированных тотиентов. То есть, мы применяем функцию Эйлера к числу n и последовательно ко всем получающимся тотиентам, пока не достигнем числа 1, последовательно складывая получающиеся числа. Если сумма равна n, то n является совершенным тотиентным числом. Алгебраически, если
Число Моцкина для данного числа n — это количество возможных вариантов соединения n различающихся точек на окружности непересекающимися хордами. Числа Моцкина названы в честь Теодора Моцкина и имеют множества проявлений в геометрии, комбинаторике и теории чисел.
Целочисленная последовательность называется полной последовательностью, если любое положительное целое число может быть выражено в виде суммы значений из последовательности, при этом каждое значение можно использовать только один раз.
Теорема о дележе пиццы утверждает равенство площадей двух областей, получающихся при разрезании круга определённым образом.