Тео́рия гра́фов — раздел дискретной математики, изучающий графы, одна из ветвей топологии. В самом общем смысле граф — это множество точек, которые соединяются множеством линий. Теория графов включена в учебные программы для начинающих математиков, поскольку:
- как и геометрия, обладает наглядностью;
- как и теория чисел, проста в объяснении и имеет сложные нерешённые задачи;
- не имеет громоздкого математического аппарата ;
- имеет выраженный прикладной характер.
Здесь собраны определения терминов из теории графов. Курсивом выделены ссылки на термины в этом словаре.
Алгори́тм Де́йкстры — алгоритм на графах, изобретённый нидерландским учёным Эдсгером Дейкстрой в 1959 году. Находит кратчайшие пути от одной из вершин графа до всех остальных. Алгоритм работает только для графов без рёбер отрицательного веса. Алгоритм широко применяется в программировании, например, его используют протоколы маршрутизации OSPF и IS-IS.
Кликой неориентированного графа называется подмножество его вершин, любые две из которых соединены ребром. Клики являются одной из основных концепций теории графов и используются во многих других математических задачах и построениях с графами. Клики изучаются также в информатике — задача определения, существует ли клика данного размера в графе является NP-полной. Несмотря на эту трудность, изучаются многие алгоритмы для поиска клик.
В теории графов паросочетание, или независимое множество рёбер в графе, — это набор попарно несмежных рёбер.
В теории графов граф называется хордальным, если каждый из его циклов, имеющих четыре ребра и более, имеет хорду.
В теории графов графом без клешней называется граф, который не содержит порождённых подграфов, изоморфных K1,3 (клешней).
В теории графов совершенным графом называется граф, в котором хроматическое число любого порождённого подграфа равно размеру максимальной клики этого подграфа. Благодаря строгой теореме о совершенных графах, с 2002 года известно, что совершенные графы — это то же самое, что и графы Бержа. Граф G является графом Бержа если ни G, ни его дополнение не имеет порождённых циклов нечётной длины.
В теории графов графом без треугольников называется неориентированный граф, в котором никакие три вершины не образуют треугольник из рёбер. Графы без треугольников можно определить также как графы с кликовым числом ≤ 2, графы с обхватом ≥ 4, графы без порождённых 3-циклов, или как локально независимые графы.
В теории графов трапецеидальными графами называются графы пересечений трапеций, все параллельные стороны которых лежат на двух прямых. Этот класс графов содержится в классе графов косравнимости и содержат интервальные графы и графы перестановки в качестве подклассов. Граф является трапецеидальным в том и только в том случае, когда существует набор трапеций, соответствующих вершинам графа, и две вершины графа соединены ребром в том и только в том случае, когда соответствующие вершинам трапеции пересекаются. Трапецеидальные графы были введены в рассмотрение в 1988 году Даганом, Колумбиком и Пинтером. Для этих графов существуют алгоритмы со временем работы для раскраски графа, для поиска взвешенных независимых множеств, кликовых покрытий и максимальных взвешенных клик.
Метрика кратчайшего пути — метрика на вершинах графа равная числу рёбер в кратчайшем пути между данными вершинами. Если нет пути между двумя вершинами, то есть если они принадлежат различным компонентам связности, то принято считать расстояние бесконечным.
Дистанционно-транзитивный граф — граф, в котором любая упорядоченная пара вершин переводится в любую другую упорядоченную пару вершин с тем же расстоянием между вершинами одним из автоморфизмов графа.
В теории графов расщепляемым графом называется граф, в котором вершины можно разделить на клику и независимое множество. Расщепляемые графы впервые изучали Фёлдес и Хаммер, и независимо ввели Тышкевич и Черняк.
В теории графов древесная ширина неориентированного графа — это число, ассоциированное с графом. Древесную ширину можно определить несколькими эквивалентными путями: как размер наибольшего множества вершин в древесном разложении, как размер наибольшей клики в хордальном дополнении графа, как максимальный порядок убежища при описании стратегии игры преследования на графе или как максимальный порядок ежевики, набора связных подграфов, которые касаются друг друга. Древесная ширина часто используется в качестве параметра в анализе параметрической сложности алгоритмов на графах. Графы с шириной дерева, не превосходящей k, называются частичными k-деревьями. Многие другие хорошо изученные семейства графов также имеют ограниченную ширину дерева.
Древесность неориентированного графа — это минимальное число лесов, на которые можно разложить рёбра. Эквивалентно это является минимальным числом остовных деревьев, которые необходимы для покрытия рёбер графа.
В теории графов хорошо покрытый граф — это неориентированный граф, в котором все минимальные по включению вершинные покрытия имеют один и тот же размер. Хорошо покрытые графы определил и изучал Пламмер.
Теорема Галлаи – Хассе – Роя – Витавера — это вид двойственности между раскрасками вершин заданного неориентированного графа и ориентациями его рёбер. Теорема утверждает, что минимальное число красок, необходимых для правильной раскраски любого графа G, на единицу больше длины максимального пути в ориентации графа G, в которой эта длина пути минимальна. В ориентации, в которых путь максимальной длины имеет минимальную длину, всегда входит по меньшей мере одна ациклическая ориентация.
Экстремальная теория графов — это ветвь теории графов. Экстремальная теория графов изучает экстремальные свойства графов, удовлетворяющих определённым условиям. Экстремальность может относиться к различным инвариантам графов, таким как порядок, размер или обхват. В более абстрактном смысле теория изучает, как глобальные свойства графа влияют на локальные подструктуры графа.
Геометрический остов или t-остовной граф, или t-остов первоначально был введён как взвешенный граф на множестве точек в качестве вершин, для которого существует t-путь между любой парой вершин для фиксированного параметра t. t-путь определяется как путь в графе с весом, не превосходящим в t раз пространственное расстояние между конечными точками. Параметр t называется коэффициентом растяжения остова.