Дви́гатель вну́треннего сгора́ния (ДВС), а ранее дви́гатель вну́треннего горе́ния — разновидность теплового двигателя, в котором топливная смесь сгорает непосредственно в рабочей камере (внутри) двигателя.
Теплово́й дви́гатель — машина, в которой внутренняя энергия топлива превращается в механическую энергию.
Дви́гатель Сти́рлинга — тепловая машина, в которой рабочее тело в виде газа или жидкости движется в замкнутом объёме, разновидность двигателя внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменения давления. Может работать не только от сжигания топлива, но и от любого источника тепла.
Поршнево́й дви́гатель — разновидность двигателя внутреннего сгорания (ДВС), в котором тепловая энергия расширяющихся газов, образовавшаяся в результате сгорания топлива в цилиндре, преобразуется в механическую работу поступательного движения поршня за счёт расширения рабочего тела в цилиндре, в который вставлен поршень. Поступательное движение поршней преобразуется во вращение коленчатого вала кривошипно-шатунным механизмом. Таким образом, эти двигатели выдают механическую энергию в виде крутящего момента.
Адиабати́ческий, или адиаба́тный проце́сс — термодинамический процесс в макроскопической системе, при котором система не обменивается теплотой с окружающим пространством. Серьёзное исследование адиабатических процессов началось в XVIII веке. В целом термин «адиабатический» в разных областях науки всегда подразумевает сохранение неизменным какого-то параметра. Так в квантовой химии, электронно-адиабатический процесс — это процесс, в котором не изменяется квантовое число электронного состояния. Например, молекула всегда остаётся в первом возбуждённом состоянии вне зависимости от изменения положения атомных ядер. Соответственно неадиабатическим называется процесс, в котором происходит изменение какого-то важного параметра.
Бензиновые двигатели — класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха посредством дроссельной заслонки.
В термодинамике цикл Карно́ или процесс Карно́ — это идеальный круговой процесс, состоящий из двух адиабатных и двух изотермических процессов. В процессе Карно термодинамическая система выполняет механическую работу за счёт обмена теплотой с двумя тепловыми резервуарами, имеющими постоянные, но различающиеся температуры. Резервуар с более высокой температурой называется нагревателем, а с более низкой температурой — холодильником.
Цикл Дизеля — термодинамический цикл, описывающий рабочий процесс двигателя внутреннего сгорания с воспламенением впрыскиваемого топлива от разогретого рабочего тела, цикл дизельного двигателя.
Идеальный цикл Дизеля состоит из четырёх процессов:
Цикл Тринклера — термодинамический цикл, описывающий рабочий процесс дизельного двигателя со смешанным сгоранием. Объединяет в себе цикл Отто и цикл Дизеля. Носит имя своего изобретателя Густава Тринклера.
Цикл Брайтона/Джоуля — термодинамический цикл, описывающий рабочие процессы газотурбинного, турбореактивного и прямоточного воздушно-реактивного двигателей внутреннего сгорания, а также газотурбинных двигателей внешнего сгорания с замкнутым контуром газообразного (однофазного) рабочего тела.
Цикл Сти́рлинга — термодинамический цикл, описывающий рабочий процесс машины Стирлинга, запатентованной в 1816 г. шотландским изобретателем Робертом Стирлингом, приходским священником по профессии.
Изохо́рный, или изохори́ческий проце́сс — термодинамический изопроцесс, который происходит при постоянном объёме. Для осуществления изохорного процесса в газе или жидкости достаточно нагревать или охлаждать вещество в сосуде неизменного объёма.
Цикл Ленуара — термодинамический цикл, описывающий рабочие процессы ряда двигателей внутреннего сгорания, имеющих разную конструкцию и область применения, в том числе:
- исторически первый работающий двигатель внутреннего сгорания, запатентованный в 1859 году бельгийским изобретателем Этьеном Ленуаром, в честь которого цикл получил своё название;
- тепловые ракетные двигатели;
- бесклапанные пульсирующие воздушно-реактивные двигатели;
- газотурбинные двигатели внутреннего сгорания, работающие без доступа атмосферного воздуха, на ракетном топливе, например, турбины двигателей торпед, турбонасосных агрегатов ЖРД, и др.
Цикл Ха́мфри — термодинамический цикл, описывающий рабочий процесс клапанного пульсирующего воздушно-реактивного двигателя
Идеальный цикл Хамфри состоит из процессов:
Четырёхтактный двигатель — поршневой двигатель внутреннего сгорания, в котором рабочий процесс в каждом из цилиндров совершается за два оборота коленчатого вала, то есть за четыре хода поршня (такта). Начиная с середины XX века — наиболее распространённая разновидность поршневого ДВС, особенно в двигателях средней и небольшой мощности.
Цикл Рейтлингера -- обобщённый замкнутый Термодинамический цикл теплового двигателя или холодильной установки с регенерацией теплоты. Так же как и цикл Карно позволяет достигать максимума подводимой в цикле теплоты при заданной экстремальной температуре цикла. Термодинамический КПД Цикла Рейтлингера равен КПД Цикла Карно. Цикл состоит из двух изотермических процессов и двух политропных процессов.
Термодинами́ческая температу́ра, или абсолю́тная температу́ра является единственной функцией состояния термодинамической системы, которая характеризует направление самопроизвольного теплообмена между телами (системами).
Эталонный цикл Эдвардса — термодинамический цикл, устанавливающий предел тепловой экономичности для двигателей, источником энергии которых служит топливо, а тепловым стоком — окружающая среда.
Техни́ческая термодина́мика — раздел термодинамики, занимающийся приложениями законов термодинамики в теплоэнергетике и теплотехнике. В технической термодинамике рассматривают:
- технические приложения основных принципов термодинамики к процессам преобразования теплоты в работу или, наоборот, работы в теплоту в тепловых машинах — двигателях, турбинах, компрессорах, холодильниках и т. д.; рассматриваются теоретические основы работы тепловых машин и оценки эффективности их рабочих процессов.
- методы прямого преобразования теплоты в электрическую энергию;
- процессы теплообмена ;
- теплотехнические свойства веществ.