Теплово́й дви́гатель — машина, в которой внутренняя энергия топлива превращается в механическую энергию.
Дви́гатель Сти́рлинга — тепловая машина, в которой рабочее тело в виде газа или жидкости движется в замкнутом объёме, разновидность двигателя внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменения давления. Может работать не только от сжигания топлива, но и от любого источника тепла.
Изопроце́ссы — термодинамические процессы, во время которых количество вещества и один из параметров состояния: давление, объём, температура или энтропия — остаётся неизменным. Так, неизменному давлению соответствует изобарный процесс, объёму — изохорный, температуре — изотермический, энтропии — изоэнтропийный. Линии, изображающие данные процессы на какой-либо термодинамической диаграмме, называются изобара, изохора, изотерма и адиабата соответственно. Изопроцессы являются частными случаями политропного процесса.
Политро́пный процесс, политропи́ческий процесс — термодинамический процесс, во время которого теплоёмкость газа остаётся неизменной.
Адиабати́ческий, или адиаба́тный проце́сс — термодинамический процесс в макроскопической системе, при котором система не обменивается теплотой с окружающим пространством. Серьёзное исследование адиабатических процессов началось в XVIII веке. В целом термин «адиабатический» в разных областях науки всегда подразумевает сохранение неизменным какого-то параметра. Так в квантовой химии, электронно-адиабатический процесс — это процесс, в котором не изменяется квантовое число электронного состояния. Например, молекула всегда остаётся в первом возбуждённом состоянии вне зависимости от изменения положения атомных ядер. Соответственно неадиабатическим называется процесс, в котором происходит изменение какого-то важного параметра.
Второ́е нача́ло термодина́мики устанавливает существование энтропии как функции состояния термодинамической системы и вводит понятие абсолютной термодинамической температуры, то есть «второе начало представляет собой закон об энтропии» и её свойствах. В изолированной системе энтропия либо остаётся неизменной, либо возрастает, достигая максимума при установлении термодинамического равновесия. Встречающиеся в литературе различные формулировки второго начала термодинамики являются частными следствиями закона возрастания энтропии.
Внутренняя энергия термодинамической системы может изменяться двумя способами: посредством совершения работы над системой и посредством теплообмена с окружающей средой. Энергия, которую получает или теряет система (тело) в процессе теплообмена с окружающей средой, называется коли́чеством теплоты́ или просто теплотой. Теплота — это одна из основных термодинамических величин в классической феноменологической термодинамике. Количество теплоты входит в стандартные математические формулировки первого и второго начал термодинамики.
Термодинами́ческие ци́клы — круговые процессы в термодинамике, то есть такие процессы, в которых совпадают начальные и конечные параметры, определяющие состояние рабочего тела.
В термодинамике цикл Карно́ или процесс Карно́ — это идеальный круговой процесс, состоящий из двух адиабатных и двух изотермических процессов. В процессе Карно термодинамическая система выполняет механическую работу за счёт обмена теплотой с двумя тепловыми резервуарами, имеющими постоянные, но различающиеся температуры. Резервуар с более высокой температурой называется нагревателем, а с более низкой температурой — холодильником.
Тепловая машина Карно или тепловой двигатель Карно — это теоретический двигатель, работающий по циклу Карно. Базовая модель этого двигателя была разработана Сади Карно в 1824 году. Модель теплового двигателя Карно была графически расширена Бенуа Полем Эмилем Клапейроном в 1834 году и математически исследована Рудольфом Клаузиусом в 1857 году, работа, которая привела к фундаментальной термодинамической концепции энтропии.
Цикл Отто — термодинамический цикл работы поршневого двигателя внутреннего сгорания, предполагающий изохорный подвод теплоты. Назван по имени немецкого конструктора Николауса Отто, построившего в 1876 году первый работоспособный поршневой ДВС, работающий по данному термодинамическому циклу. На основе цикла Отто реализован цикл работы двигателей с искровым зажиганием, как двухтактных, так и четырёхтактных.
Тепловой процесс — изменение макроскопического состояния термодинамической системы.
Цикл Сти́рлинга — термодинамический цикл, описывающий рабочий процесс машины Стирлинга, запатентованной в 1816 г. шотландским изобретателем Робертом Стирлингом, приходским священником по профессии.
Изохо́рный, или изохори́ческий проце́сс — термодинамический изопроцесс, который происходит при постоянном объёме. Для осуществления изохорного процесса в газе или жидкости достаточно нагревать или охлаждать вещество в сосуде неизменного объёма.
Изотермический или изотермный процесс — термодинамический процесс, происходящий в физической системе при постоянной температуре.
Коэффицие́нт поле́зного де́йствия (КПД) — характеристика эффективности системы в отношении преобразования или передачи энергии. Определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой; обозначается обычно η («эта»). КПД является безразмерной величиной и часто выражается в процентах. Часто применяется в переносном смысле как метафора эффективности чего-либо без привязки к расчётам.
Термодинами́ческая температу́ра, или абсолю́тная температу́ра является единственной функцией состояния термодинамической системы, которая характеризует направление самопроизвольного теплообмена между телами (системами).
Эталонный цикл Эдвардса — термодинамический цикл, устанавливающий предел тепловой экономичности для двигателей, источником энергии которых служит топливо, а тепловым стоком — окружающая среда.
Техни́ческая термодина́мика — раздел термодинамики, занимающийся приложениями законов термодинамики в теплоэнергетике и теплотехнике. В технической термодинамике рассматривают:
- технические приложения основных принципов термодинамики к процессам преобразования теплоты в работу или, наоборот, работы в теплоту в тепловых машинах — двигателях, турбинах, компрессорах, холодильниках и т. д.; рассматриваются теоретические основы работы тепловых машин и оценки эффективности их рабочих процессов.
- методы прямого преобразования теплоты в электрическую энергию;
- процессы теплообмена ;
- теплотехнические свойства веществ.