Це́лые чи́сла — расширение множества натуральных чисел, получаемое добавлением к нему нуля и отрицательных чисел. Необходимость рассмотрения целых чисел продиктована невозможностью в общем случае вычесть из одного натурального числа другое — можно вычитать только меньшее число из большего. Введение нуля и отрицательных чисел делает вычитание такой же полноценной операцией, как сложение.
Алгори́тм Евкли́да — эффективный алгоритм для нахождения наибольшего общего делителя двух целых чисел. Алгоритм назван в честь греческого математика Евклида, который впервые описал его в VII и X книгах «Начал». Это один из старейших численных алгоритмов, используемых в наше время.
Дели́мость — одно из основных понятий арифметики и теории чисел, связанное с операцией деления. С точки зрения теории множеств, делимость целых чисел является отношением, определённым на множестве целых чисел.
Юлиа́нская да́та (JD) — астрономический способ измерения времени, при котором считается число суток, прошедших начиная с полудня понедельника, 1 января 4713 года до н. э. пролептического юлианского календаря или, что то же самое, 24 ноября 4714 года до н. э. пролептического григорианского календаря. Первый день имел номер 0. С тех пор по настоящее время прошло немногим менее 2,5 миллиона дней. Даты сменяются в полдень UT или TT. Для точного обозначения времени применяют дробную часть, например, JD = 2451545,25 соответствует 18 часам 1 января 2000 года; 3 часа дня 2 августа 1942 года — JD 2430574,125; 13,5 июня 1944 года — JD 2431255,0.
Кома́нда перехо́да — команда процессора, которая нарушает непрерывную последовательность исполнения команд, вынуждая выбирать и исполнять последующие команды с произвольно заданного адреса. Используется для организации условных операторов, циклов, для связи с подпрограммами. Исполнение команды перехода в современных микропроцессорах чревато потерями производительности из-за простоев конвейера.
Ссылка в программировании — это объект, указывающий на определенные данные, но не хранящий их. Получение объекта по ссылке называется разыменованием.
Множество — тип и структура данных в информатике, которая является реализацией математического объекта множество.
Ме́тод Га́усса — Зе́йделя — является классическим итерационным методом решения системы линейных уравнений.
HQ9+ — эзотерический язык программирования, созданный Клифом Биффлом во время зимних каникул в 2000-2001 годах, который состоит из четырёх команд, каждая из которых представляет один символ: H, Q, 9, и +. Этот язык не является полным по Тьюрингу.
Га́уссовы це́лые чи́сла — это комплексные числа, у которых как вещественная, так и мнимая часть — целые числа.
Не́га-позицио́нная систе́ма счисле́ния — позиционная система счисления с отрицательным основанием. Особенностью таких систем является отсутствие знака перед отрицательными числами и, следовательно, отсутствие правил знаков. Всякое число любой из нега-позиционных систем, отличное от , с нечётным числом цифр — положительно, а с чётным числом цифр — отрицательно. Часто число в нега-позиционной системе требует для записи на одну цифру больше, чем то же число в системе с положительным основанием. Обычно название нега-позиционной системы состоит из приставки нега- и названия соответствующей системы счисления с положительным основанием; например, нега-десятичная (b = −10), нега-троичная (b = −3), нега-двоичная (b = −2) и другие.
Деление столбиком — стандартная процедура в арифметике, предназначенная для деления простых или сложных многозначных чисел за счёт разбивания деления на ряд более простых шагов. Как и во всех задачах на деление, одно число, называемое делимым, делится на другое, называемое делителем, производя результат, называемый частным. Этот способ позволяет выполнять деление произвольно больших чисел, разбивая процесс на серию последовательных простых шагов.
Гипо́теза Ко́ллатца — одна из нерешённых проблем математики. Получила широкую известность благодаря простоте формулировки. Названа по имени немецкого математика Лотара Коллатца, сформулировавшего похожую задачу 1 июля 1932 года.
Метод галеры — способ деления, который был самым используемым в Европе примерно до 1600-х годов, и продолжал быть популярным до конца XVIII века. Метод возник на основе китайского и индийского методов. Метод упоминается у Аль-Хорезми в работах 825 года, у Луки Пачоли в 1492 году.
Алгоритм Лианга — Барски — алгоритм, используемый в компьютерной графике для отсечения отрезков в некоторой прямоугольной области. Был разработан Лян Юдуном и Брайаном Барски в 1984 году и усовершенствован в 1992 году.
Алгоритм деления — это алгоритм, который для двух данных целых числа N и D вычисляет их частное и/или остаток, результат деления с остатком. Некоторые из алгоритмов предназначены для вычислений вручную, другие реализованы в цифровых схемах и программном обеспечении.