Ква́нтовый эффе́кт Хо́лла — эффект квантования холловского сопротивления или проводимости двумерного электронного газа в сильных магнитных полях и при низких температурах. Квантовый эффект Холла (КЭХ) был открыт Клаусом фон Клитцингом в 1980 году, за что впоследствии, в 1985 году, он получил Нобелевскую премию.
Насо́с — гидравлическая машина, преобразующая механическую энергию приводного двигателя или мускульную энергию в энергию потока жидкости, служащую для перемещения и создания напора жидкостей всех видов, механической смеси жидкости с твёрдыми и коллоидными веществами или сжиженных газов. Разность давлений жидкости на выходе из насоса и присоединённом трубопроводе обуславливает её перемещение.
Уравне́ния Ма́ксвелла — система уравнений в дифференциальной или интегральной форме, описывающих электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах. Вместе с выражением для силы Лоренца, задающим меру воздействия электромагнитного поля на заряженные частицы, эти уравнения образуют полную систему уравнений классической электродинамики, называемую иногда уравнениями Максвелла — Лоренца. Уравнения, сформулированные Джеймсом Клерком Максвеллом на основе накопленных к середине XIX века экспериментальных результатов, сыграли ключевую роль в развитии представлений теоретической физики и оказали сильное, зачастую решающее влияние не только на все области физики, непосредственно связанные с электромагнетизмом, но и на многие возникшие впоследствии фундаментальные теории, предмет которых не сводился к электромагнетизму.
Эффект Шубникова — де Хааза назван в честь советского физика Л. В. Шубникова и нидерландского физика В. де Хааза, открывших его в 1930 году. Наблюдаемый эффект заключался в осцилляциях магнетосопротивления плёнок висмута при низких температурах. Позже эффект Шубникова — де Гааза наблюдали в многих других металлах и полупроводниках. Эффект Шубникова — де Гааза используется для определения тензора эффективной массы и формы поверхности Ферми в металлах и полупроводниках.
Стоимость под риском — стоимостная мера риска. Это выраженная в денежных единицах оценка величины, которую не превысят ожидаемые в течение данного периода времени потери с заданной вероятностью.
Молекулярно-кинетическая теория — теория, возникшая в XIX веке и рассматривающая строение вещества, в основном газов, с точки зрения трёх основных приближенно верных положений:
- все тела состоят из частиц: атомов, молекул и ионов;
- частицы находятся в непрерывном хаотическом движении (тепловом);
- частицы взаимодействуют друг с другом путём абсолютно упругих столкновений.
Физи́ческая кине́тика — микроскопическая теория процессов в неравновесных средах. В кинетике методами квантовой или классической статистической физики изучают процессы переноса энергии, импульса, заряда и вещества в различных физических системах и влияние на них внешних полей. В отличие от термодинамики неравновесных процессов и электродинамики сплошных сред, кинетика исходит из представления о молекулярном строении рассматриваемых сред, что позволяет вычислить из первых принципов кинетические коэффициенты, диэлектрические и магнитные проницаемости и другие характеристики сплошных сред. Физическая кинетика включает в себя кинетическую теорию газов из нейтральных атомов или молекул, статистическую теорию неравновесных процессов в плазме, теорию явлений переноса в твёрдых телах и жидкостях, кинетику магнитных процессов и теорию кинетических явлений, связанных с прохождением быстрых частиц через вещество. К ней же относятся теория процессов переноса в квантовых жидкостях и сверхпроводниках и кинетика фазовых переходов.
Зако́н Сте́фана — Бо́льцмана — интегральный закон излучения абсолютно чёрного тела. Он определяет зависимость плотности мощности излучения абсолютно чёрного тела от его температуры. В словесной форме его можно сформулировать следующим образом:
Полная объёмная плотность равновесного излучения и полная испускательная способность абсолютно чёрного тела пропорциональны четвёртой степени его температуры.
Зако́н электромагни́тной инду́кции Фараде́я является основным законом электродинамики, касающимся принципов работы трансформаторов, дросселей, многих видов электродвигателей и генераторов. Закон гласит:
Магнитная гидродинамика — физическая дисциплина, возникшая на пересечении гидродинамики и электродинамики сплошной среды. Предметом её изучения является динамика проводящей жидкости или газа в магнитном поле. Примерами изучаемых сред являются различного рода плазма, жидкие металлы, солёная вода.
Тепловые флуктуации приводят к тому, что на поверхности жидкости постоянно генерируются капиллярные волны, которые оказывают значительное влияние на структуру поверхностного слоя жидкости.
Потенциал Леннарда-Джонса — простая модель парного взаимодействия неполярных молекул, описывающая зависимость энергии взаимодействия двух частиц от расстояния между ними. Эта модель достаточно реалистично передаёт свойства реального взаимодействия сферических неполярных молекул и поэтому широко используется в расчётах и при компьютерном моделировании. Впервые этот вид потенциала был предложен Леннард-Джонсом в 1924 году.
Число́ Ка́улинга — критерий подобия в магнитной гидродинамике, равный отношению магнитной силы к инерционной. Оно определяется следующим образом :
- ,
Число Бонда — критерий подобия в гидродинамике, определяющий соотношение между внешними силами и силами поверхностного натяжения. Оно выражается следующим образом:
Число Лундквиста — критерий подобия в магнитной гидродинамике, равный отношению воздействия альфвеновских волн на жидкость к вязкому трению. Оно определяется следующим образом:
- ,
Магнитное число Рейнольдса (Rem) — критерий подобия в магнитной гидродинамике, характеризующий взаимодействие проводящих движущихся жидкостей и газов (плазмы) с магнитным полем. Оно определяется следующим образом:
- ,
Число Ричардсона — критерий подобия в гидродинамике, равный отношению потенциальной энергии тела, погружённого в жидкость к его кинетической энергии. Под «телом» здесь обычно понимается рассматриваемая жидкость или газ.
Ядерное эффективное сечение, эффективное сечение ядра, ядерное сечение реакции, микроскопическое сечение реакции — величина, характеризующая вероятность взаимодействия элементарной частицы с атомным ядром или другой частицей. Единица измерения эффективного сечения — барн. С помощью известных эффективных сечений вычисляют скорости ядерных реакций или количество прореагировавших частиц.