Здесь собраны определения терминов из теории графов. Курсивом выделены ссылки на термины в этом словаре.
В теории графов теорема Кёнига , доказанная Денешем Кёнигом в 1931, утверждает эквивалентность задач нахождения наибольшего паросочетания и наименьшего вершинного покрытия в двудольных графах. Независимо была открыта, в том же 1931, Йенё Эгервари в несколько более общем виде для случая взвешенных графов.
Подпростра́нство — понятие, используемое в различных разделах математики.
Зада́ча о незави́симом мно́жестве относится к классу NP-полных задач в области теории графов. Эквивалентна задаче о клике.
Задача о вершинном покрытии — NP-полная задача информатики в области теории графов. Часто используется в теории сложности для доказательства NP-полноты более сложных задач.
Винеровское оценивание — задача нахождения импульсной характеристики линейной стационарной системы, дающей на выходе оптимальную в смысле минимума математического ожидания средней квадратической ошибки оценку значений полезного сигнала, поступающего на вход в аддитивной смеси с шумом.
В теории графов паросочетание, или независимое множество рёбер в графе, — это набор попарно несмежных рёбер.
Четырёхфермионная теория слабого взаимодействия — теория слабого взаимодействия, предполагающая, что превращение нуклона при бета-распаде осуществляется в результате взаимодействия адронного тока, переводящего, например, нейтрон в протон, и лептонного тока, рождающего, например электрон и антинейтрино. Построена по аналогии теории взаимодействия заряда и электромагнитного поля в квантовой электродинамике. Является первой теорией слабых взаимодействий. Создана Энрико Ферми в 1934 году
В теории графов доминирующее множество для графа G = (V, E) — это подмножество D множества вершин V, такое, что любая вершина не из D смежна хотя бы одному элементу из D. Число доминирования γ(G) — это число вершин в наименьшем доминирующем множестве G.
Рёберное покрытие графа — это множество рёбер C, такое, что каждая вершина графа инцидентна по меньшей мере одному ребру из C.
AK-моде́ль — эндогенная модель экономического ростa, в которой устойчивый экономический рост достигается за счет неубывающей предельной производительности капитала, понимаемого в модели как совокупность физического и человеческого капитала, в производстве инвестиционных товаров. AK-модель преодолела недостаток экзогенности темпов научно-технического прогресса, присущий неоклассическим моделям, и показала возможность негативного воздействия фискальной политики на долгосрочные темпы экономического роста. Однако сильная чувствительность темпов экономического роста к изменениям налоговой ставки, предполагаемая по модели, не подтверждается эмпирически. Также в модели не раскрывается целенаправленная деятельность экономических агентов по инвестированию в новые технологии с целью извлечения прибыли. Разработана в 1990 году Серджио Ребело.
Ме́тод Га́усса в небесной механике и астродинамике используется для первоначального определения параметров орбиты небесного тела по трём наблюдениям.
Число паросочетания графа — размер наибольшего паросочетания в нём.
Число вершинного покрытия графа — размер наименьшего вершинного покрытия в нём.
Число рёберного покрытия графа — размер наименьшего рёберного покрытия в нём.
В теории многих тел термин функция Грина иногда используется как синоним корреляционной функции, но относится к корреляторам операторов поля или операторам рождения и уничтожения.