Число развязывания

Перейти к навигацииПерейти к поиску
Трилистник развязывается путём переключения одного моста.

Число развязывания в теории узлов — один из важных инвариантов узла, минимальное число переключения мостов, то есть число переходов сквозь себя, после чего узел развязывается.

Числа развязывания некоторых узлов

Любой составной узел имеет число развязывания по меньшей мере два, а потому любой узел с числом развязывания единица является простым. Следующая таблица показывает числа развязывания для первых нескольких узлов:

Свойства

Если узел имеет число развязывания , существует диаграмма[англ.]* узла, которая может быть приведена к тривиальному узлу переключением пересечений[1]. Число развязывания узла всегда меньше половины его числа пересечений[2].

В общем случае достаточно сложно определить число развязывания заданного узла. Случаи, для которых число развязывания известно:

Другие числовые инварианты узлов

См. также

Примечания

  1. Adams, 2004, с. 56.
  2. Taniyama, 2009, с. 1049—1063.
  3. Weisstein, Eric W. Unknotting Number (англ.) на сайте Wolfram MathWorld.

Литература

  • Kouki Taniyama. Unknotting numbers of diagrams of a given nontrivial knot are unbounded // Journal of Knot Theory and its Ramifications. — 2009. — Т. 18, вып. 8. — doi:10.1142/S0218216509007361.
  • Colin Conrad Adams. The knot book: an elementary introduction to the mathematical theory of knots. — Providence, Rhode Island: American Mathematical Society, 2004. — ISBN 0-8218-3678-1.

Ссылки