Градие́нт — вектор, своим направлением указывающий направление наискорейшего роста некоторой скалярной величины .
Теоре́ма Нётер или первая теорема Нётер утверждает, что каждой дифференцируемой симметрии действия для физической системы с консервативными силами соответствует закон сохранения. Теорема была доказана математиком Эмми Нётер в 1915 году и опубликована в 1918 году. Действие для физической системы представляет собой интеграл по времени функции Лагранжа, из которого можно определить поведение системы согласно принципу наименьшего действия. Эта теорема применима только к непрерывным и гладким симметриям над физическим пространством.
Вариацио́нное исчисле́ние — раздел анализа, в котором изучаются вариации функционалов. Наиболее типичная задача — найти функцию, на которой заданный функционал достигает экстремального значения.
Интегри́рование по частя́м — один из способов нахождения интеграла. Суть метода в следующем: если подынтегральная функция может быть представлена в виде произведения двух непрерывных и гладких функций, то справедливы следующие формулы
- для неопределённого интеграла
Функция Вигнера была введена Вигнером в 1932 году для изучения квантовых поправок к классической статистической механике. Целью было заменить волновую функцию, которая появляется в уравнении Шрёдингера на функцию распределения вероятности в фазовом пространстве. Она была независимо выведена Вейлем в 1931 году как символ матрицы плотности теории представлений в математике. Функция Вигнера применяется в статистической механике, квантовой химии, квантовой оптике, классической оптике и анализе сигналов в различных областях, таких как электроника, сейсмология, акустика, биология. При анализе сигналов используются названия преобразование Вигнера — Вилла и распределение Вигнера — Вилла.
Фу́нкция Гри́на — функция, используемая для решения линейных неоднородных дифференциальных уравнений с граничными условиями . Названа в честь английского математика Джорджа Грина, который первым развил соответствующую теорию в 1830-е годы.
Лагранжева механика — формулировка классической механики, введённая Луи Лагранжем в 1788 году. В лагранжевой механике траектория объекта получается при помощи отыскания пути, который минимизирует действие — интеграл от функции Лагранжа по времени. Функция Лагранжа для классической механики вводится в виде разности между кинетической энергией и потенциальной энергией.
Гамильто́нова меха́ника является одной из формулировок классической механики. Предложена в 1833 году Уильямом Гамильтоном. Она возникла из лагранжевой механики, другой формулировки классической механики, введённой Лагранжем в 1788 году. Гамильтонова механика может быть сформулирована без привлечения лагранжевой механики с использованием симплектических многообразий и пуассоновых многообразий.
В квантовой механике ток вероятности описывает изменение функции плотности вероятности.
Квазичастицы в графене обладают линейным законом дисперсии вблизи дираковских точек и их свойства полностью описываются уравнением Дирака. Сами дираковские точки находятся на краях зоны Бриллюэна, где электроны обладают большим волновым вектором. Если пренебречь процессами переброса между долинами, то этот большой вектор никак не влияет на транспорт в низкоэнергетическом приближении, поэтому волновой вектор, фигурирующий в уравнении Дирака, отсчитывают от дираковских точек и уравнение Дирака записывают для разных долин отдельно.
Изгиб — в сопротивлении материалов вид деформации, при котором происходит искривление осей прямых брусьев или изменение кривизны осей кривых брусьев, изменение кривизны/искривление срединной поверхности пластины или оболочки. Изгиб связан с возникновением в поперечных сечениях бруса или оболочки изгибающих моментов. Прямой изгиб балки возникает в случае, когда изгибающий момент в данном поперечном сечении бруса действует в плоскости, проходящей через одну из главных центральных осей инерции этого сечения. В случае, когда плоскость действия изгибающего момента в данном поперечном сечении бруса не проходит ни через одну из главных осей инерции этого сечения, изгиб называется косым.
В термодинамике и кинетической теории, -теорема, полученная Больцманом в 1872 году, описывает неубывание энтропии идеального газа в необратимых процессах, исходя из уравнения Больцмана.
Действие в физике — скалярная физическая величина, являющаяся мерой движения физической системы. Действие является математическим функционалом, который берёт в качестве аргумента траекторию движения физической системы и возвращает в качестве результата вещественное число.
Формулировка квантовой механики через интеграл по траекториям — описание квантовой теории, которое обобщает принцип действия классической механики. Оно замещает классическое определение одиночной, уникальной траектории системы полной суммой по бесконечному множеству всевозможных траекторий для расчёта квантовой амплитуды. Методологически формулировка через интеграл по траекториям близка к принципу Гюйгенса — Френеля из классической теории волн.
Распределе́ние (канони́ческое) Ги́ббса — распределение состояний макроскопической термодинамической системы частиц, находящейся в тепловом равновесии с термостатом.
В экономике компенсирующая вариация дохода — одна из мер оценки изменения благосостояния агента. Компенсирующая вариация дает ответ на вопрос: какое изменение в доходе компенсировало бы изменение цен потребителю настолько, чтобы он остался на прежнем уровне благосостояния.
Температурные функции Грина являются некоторой модификацией функций Грина для квантовомеханических систем с температурой отличной от нуля. Они удобны для вычисления термодинамических свойств системы, а также содержат информацию о спектре квазичастиц и о слабонеравновесных кинетических явлениях.
Модель Удзавы — Лукаса — двухсекторная модель эндогенного экономического роста в условиях совершенной конкуренции, показывающая возможность существования устойчивого экономического роста, обусловленного внешними эффектами от накопления персонифицированного человеческого капитала в секторе образования. В модели показано, что решения экономических агентов об уровне образования могут быть источником устойчивого экономического роста наряду с научно-техническим прогрессом. Модель Удзавы — Лукаса вклад в изучение человеческого капитала и внешних эффектов от него. Первоначальная версия модели была разработана Хирофуми Удзавой в 1965 году, которая затем была существенно дополнена Робертом Лукасом в 1988 году.
Квазилинейная функция полезности линейна по одному из своих аргументов, обычно — по счётным деньгам. Квазилинейные предпочтения можно выразить функцией
- ,
Моде́ль расту́щего разнообра́зия това́ров — трёхсекторная модель эндогенного экономического роста в условиях монополистической конкуренции, показывающая возможность существования устойчивого экономического роста, обусловленного поведенческими факторами. В модели технологический прогресс является следствием целенаправленной деятельности экономических агентов по инвестированию в новые технологии с целью извлечения прибыли. Модель внесла существенный вклад в понимание того, каким образом решения индивидов влияют на темпы экономического роста, а также причин, по которым бедные страны не могут догнать богатые. Разработана в 1988 году Полом Ромером.