Тождества для двойного угла позволяют привести их к виду
Элемент площади равен:
а лапласиан равен
Прочие дифференциальные операторы могут быть получены подстановкой коэффициентов Ламэ в общие формулы для ортогональных координат. Например, градиент скалярного поля записывается:
где
,
.
Другое определение
Иногда используется другое более геометрически интуитивное определение эллиптических координат :
Таким образом, линии уровня являются эллипсами, а линии уровня являются гиперболами. При этом
Координаты имеют простую связь с расстояниями до фокусов и . Для любой точки на плоскости
где — расстояния до фокусов соответственно.
Таким образом:
Напомним, что и находятся в точках и соответственно.
Недостатком этой системы координат является то, что она не отображается взаимно однозначно на декартовы координаты:
Коэффициенты Ламэ
Коэффициенты Ламэ для альтернативных эллиптических координат равны:
Элемент площади равен
а лапласиан равен
Прочие дифференциальные операторы могут быть получены подстановкой коэффициентов Ламэ в общие формулы для ортогональных координат.
Литература
Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров). — М.: Наука, 1974. — 832 с.
Теоре́ма Нётер или первая теорема Нётер утверждает, что каждой дифференцируемой симметрии действия для физической системы с консервативными силами соответствует закон сохранения. Теорема была доказана математиком Эмми Нётер в 1915 году и опубликована в 1918 году. Действие для физической системы представляет собой интеграл по времени функции Лагранжа, из которого можно определить поведение системы согласно принципу наименьшего действия. Эта теорема применима только к непрерывным и гладким симметриям над физическим пространством.
Уравне́ния Ма́ксвелла — система уравнений в дифференциальной или интегральной форме, описывающих электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах. Вместе с выражением для силы Лоренца, задающим меру воздействия электромагнитного поля на заряженные частицы, эти уравнения образуют полную систему уравнений классической электродинамики, называемую иногда уравнениями Максвелла — Лоренца. Уравнения, сформулированные Джеймсом Клерком Максвеллом на основе накопленных к середине XIX века экспериментальных результатов, сыграли ключевую роль в развитии представлений теоретической физики и оказали сильное, зачастую решающее влияние не только на все области физики, непосредственно связанные с электромагнетизмом, но и на многие возникшие впоследствии фундаментальные теории, предмет которых не сводился к электромагнетизму.
Эффект Шубникова — де Хааза назван в честь советского физика Л. В. Шубникова и нидерландского физика В. де Хааза, открывших его в 1930 году. Наблюдаемый эффект заключался в осцилляциях магнетосопротивления плёнок висмута при низких температурах. Позже эффект Шубникова — де Гааза наблюдали в многих других металлах и полупроводниках. Эффект Шубникова — де Гааза используется для определения тензора эффективной массы и формы поверхности Ферми в металлах и полупроводниках.
Лагранжиа́н, фу́нкция Лагра́нжа динамической системы, является функцией обобщённых координат и описывает развитие системы. Например, уравнения движения в этом подходе получаются из принципа наименьшего действия, записываемого как
Параболические координаты — ортогональная система координат на плоскости, в которой координатные линии являются конфокальными параболами. Трёхмерный вариант этой системы координат получается при вращении парабол вокруг их оси симметрии.
Те́нзор эне́ргии-и́мпульса (ТЭИ) — симметричный тензор второго ранга (валентности), описывающий плотность и поток энергии и импульса полей материи и определяющий взаимодействие этих полей с гравитационным полем.
Антидеси́ттеровское простра́нство — псевдориманово многообразие постоянной отрицательной кривизны. Его можно считать псевдоримановым аналогом -мерного гиперболического пространства. Названо как противопоставление пространству де Ситтера, обозначается обычно .
Биполярные координаты — ортогональная система координат на плоскости, основанная на кругах Аполлония. Для перехода из биполярных координат в декартовы координаты, служат следующие формулы:
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики.
Реше́ние Ке́рра — Нью́мена — точное решение уравнений Эйнштейна, описывающее невозмущённую электрически заряженную вращающуюся чёрную дыру без космологического члена. Астрофизическая значимость решения неясна, так как предполагается, что встречающиеся в природе коллапсары не могут быть существенно электрически заряжены.
Тензор электромагнитного поля — это антисимметричный дважды ковариантный тензор, являющийся обобщением напряжённости электрического и индукции магнитного поля для произвольных преобразований координат. Он используется для инвариантной формулировки уравнений электродинамики, в частности, с его помощью можно легко обобщить электродинамику на случай наличия гравитационного поля.
В современной физике электромагни́тный потенциа́л обычно означает четырёхмерный потенциал электромагнитного поля, являющийся 4-вектором (1-формой). Именно в связи с векторным (4-векторным) характером электромагнитного потенциала электромагнитное поле относится к классу векторных полей в том смысле, который употребляется в современной физике по отношению к фундаментальным бозонным полям.
Обозначается электромагнитный потенциал чаще всего или , что подразумевает величину с индексом, имеющую четыре компоненты или , причём индексом 0, как правило, обозначается временная компонента, а индексами 1, 2, 3 — три пространственных. В данной статье мы будем придерживаться первого обозначения.
В современной литературе могут использоваться более абстрактные обозначения.
Спонта́нное наруше́ние симме́три́и — способ нарушения симметрии физической системы, при котором исходное состояние и уравнения движения системы инвариантны относительно некоторых преобразований симметрии, но в процессе эволюции система переходит в состояние, для которого инвариантность относительно некоторых преобразований начальной симметрии нарушается. Спонтанное нарушение симметрии всегда связано с вырождением состояния с минимальной энергией, называемого вакуумом. Множество всех вакуумов имеет начальную симметрию, однако каждый вакуум в отдельности — нет. Например, шарик в жёлобе с двумя ямами скатывается из неустойчивого симметричного состояния в устойчивое состояние с минимальной энергией либо влево, либо вправо, разрушая при этом симметрию относительно изменения левого на правое.
Пропагатор в квантовой механике и квантовой теории поля (КТП) — функция, характеризующая распространение релятивистского поля от одного акта взаимодействия до другого. Эта функция определяет амплитуду вероятности перемещения частицы из одного места пространства в другое за заданный промежуток времени или перемещения частицы с определённой энергией и импульсом. Для расчёта частоты столкновений в КТП используются виртуальные частицы, представленные в диаграммах Фейнмана пропагаторами, вносят свой вклад в вероятность рассеяния, описываемого соответствующей диаграммой. Их также можно рассматривать как оператор, обратный волновому оператору, соответствующему частице, и поэтому их часто называют (причинными) функциями Грина.
Статическая изотропная метрика — это метрика, определяющая статическое изотропное гравитационное поле. Частным случаем этой метрики является метрика Шварцшильда, на случай пустого пространства-времени.
Уравне́ние Шви́нгера — Томона́ги, в квантовой теории поля, основное уравнение движения, обобщающее уравнение Шрёдингера на релятивистский случай.
Круговая орбита — орбита, все точки которой находятся на одинаковом расстоянии от центральной точки, создаваемая обращающимся вокруг неподвижной оси телом. Может рассматриваться как частный случай эллиптической орбиты при нулевом эксцентриситете. В Солнечной системе почти круговые орбиты у Венеры и Земли.
Эллипсоидальные координаты — трёхмерная ортогональная система координат , являющаяся обобщением двумерной эллиптической системы координат. Данная система координат основана на использовании софокусных поверхностей второго порядка.
Конические координаты — трёхмерная ортогональная система координат, состоящая из концентрических сфер и двумя семействами перпендикулярных конусов, направленных вдоль осей z и x.
Ме́тод Га́усса в небесной механике и астродинамике используется для первоначального определения параметров орбиты небесного тела по трём наблюдениям.
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.