Термодина́мика — раздел физики, изучающий наиболее общие свойства макроскопических систем и способы передачи и превращения энергии в таких системах.
Свобо́дная эне́ргия Ги́ббса — это величина, изменение которой в ходе химической реакции равно изменению внутренней энергии системы. Энергия Гиббса показывает, какая часть от полной внутренней энергии системы может быть использована для химических превращений или получена в их результате в заданных условиях и позволяет установить принципиальную возможность протекания химической реакции в заданных условиях. Математически это термодинамический потенциал следующего вида:
Термодинамическая энтропия , часто именуемая просто энтропией, — физическая величина, используемая для описания термодинамической системы, одна из основных термодинамических величин; энтропия и температура — сопряжённые термодинамические величины, необходимые для описания термических свойств системы и тепловых процессов в ней. Энтропия является функцией состояния и широко используется в термодинамике, в том числе технической и химической.
Хими́ческая реа́кция — превращение одного или нескольких исходных веществ (реагентов) в другие вещества (продукты), при котором ядра атомов не меняются, при этом происходит перераспределение электронов и ядер, и образуются новые химические вещества. В отличие от ядерных реакций, при химических реакциях не изменяется общее число ядер атомов и изотопный состав химических элементов.
Пе́рвое нача́ло термодина́мики — один из основных законов этой дисциплины, представляющий собой конкретизацию общефизического закона сохранения энергии для термодинамических систем, в которых необходимо учитывать термические, массообменные и химические процессы. В форме закона сохранения первое начало используют в термодинамике потока и в неравновесной термодинамике. В равновесной термодинамике под первым законом термодинамики обычно подразумевают одно из следствий закона сохранения энергии, из чего проистекает отсутствие единообразия формулировок первого начала, используемых в учебной и научной литературе.
Внутренняя энергия термодинамической системы может изменяться двумя способами: посредством совершения работы над системой и посредством теплообмена с окружающей средой. Энергия, которую получает или теряет система (тело) в процессе теплообмена с окружающей средой, называется коли́чеством теплоты́ или просто теплотой. Теплота — это одна из основных термодинамических величин в классической феноменологической термодинамике. Количество теплоты входит в стандартные математические формулировки первого и второго начал термодинамики.
Эне́ргия Гельмго́льца — термодинамический потенциал, убыль которого в квазистатическом изотермическом процессе равна работе, совершённой системой над внешними телами.
При́нцип Ле Шателье́ — Бра́уна (1884 г.) — если на систему, находящуюся в устойчивом равновесии, воздействовать извне, изменяя какое-либо из условий равновесия, то в системе усиливаются процессы, направленные в сторону противодействия изменениям.
Тепловой эффект химической реакции — изменение внутренней энергии или энтальпии системы вследствие протекания химической реакции и превращения исходных веществ (реактантов) в продукты реакции в количествах, соответствующих уравнению химической реакции при следующих условиях:
- единственно возможной работой при этом является работа против внешнего давления,
- как исходные вещества, так и продукты реакции имеют одинаковую температуру.
Гибридизация ДНК, гибридизация нуклеиновых кислот — соединение in vitro комплементарных одноцепочечных нуклеиновых кислот в одну молекулу. При полной комплементарности объединение происходит легко и быстро, а в случае частичной некомплементарности слияние цепочек замедляется, что позволяет оценить степень комплементарности. Возможна гибридизация ДНК-ДНК и ДНК-РНК.
Конста́нта равнове́сия — величина, определяющая для данной химической реакции соотношение между термодинамическими активностями исходных веществ и продуктов в состоянии химического равновесия. Зная константу равновесия реакции, можно рассчитать равновесный состав реагирующей смеси, предельный выход продуктов, определить направление протекания реакции.
Хемиосмос — биохимический механизм, с помощью которого осуществляется превращение энергии цепи переноса электронов в энергию АТФ. Включает изменение электрохимического потенциала клеточной мембраны.
Аксиоматика термодинамики имеет своей задачей выявление структуры термодинамических понятий и законов с целью логически непротиворечивого введения в научный оборот макроскопических физических величин, которым не даётся определения в других разделах физики, — внутренней энергии, энтропии и температуры: «в термодинамику вводятся две новые физические величины — энтропия и абсолютная температура; этот шаг подлежит обоснованию». Существует и другое представление о роли аксиоматики в термодинамике (Г. Фальк): «С установлением какой-либо теории она сама становится предметом исследования прежде всего, когда она благодаря дополнениям в такой мере расширяется, что становится всё труднее проникнуть в её логические связи. Тогда и начинаются задачи аксиоматики…».
Химическая переменная — в физической химии величина, которая отражает полноту протекания реакции, то есть то, на сколько изменился состав системы в ходе реакции.
Экзергонические реакции, также самопроизвольные реакции — согласно второму началу термодинамики это химические реакции, которые протекают без притока энергии извне. Величина свободной энергии таких реакций всегда отрицательна, т.е. ΔG° < 0. Большинство химических реакций, которые протекают в окружающей среде — экзергонические, вследствие этого они являются термодинамически выгодными, в отличие от эндергонических. Примером экзергонических реакций являются процессы электролитической диссоциации, окисления и горения, сорбционные процессы, фотохимические процессы (фотодиссоциация), в живых организмах это процессы катаболизма — гликолиз, липолиз, протеолиз, окисление жирных кислот и многие другие.
Поверхностная энергия, также свободная поверхностная энергия, поверхностная энергия Гиббса — термодинамическая функция, характеризующая энергию межмолекулярного взаимодействия частиц на поверхности раздела фаз с частицами каждой из контактирующих фаз. Другое определение поверхностной энергии — это потенциальная энергия, которая сосредоточена на межфазной поверхности, необходимая для образования единицы площади поверхности. Является избыточной по сравнению с энергией в объёме, то есть не равной нулю. Единица измерения в системе СИ — Дж/м2.
В химии, молекула испытывает напряжение, когда её химическая структура подвергается некоторой деформации, вызванной действием внутренних сил, которая ведёт к увеличению внутренней энергии по сравнению с эталонным соединением без деформаций. Внутренняя энергия молекулы состоит из суммы всех энергий, «запасенных» внутри неё. Отдельно взятая форма напряженной молекулы, отличающаяся от всех других называется конформером. Напряженная молекула имеет дополнительную энергию, которую не имеет ненапряженное соединение. Эту дополнительную энергию, или энергию напряжения, можно сравнить со сжатой пружиной. Точно также, как сжатая пружина должна удерживаться на месте, чтобы не дать высвободиться своей потенциальной энергии, молекула может удерживаться в энергетически невыгодной конформации за счет химических связей внутри нее. Без этих химических связей, удерживающих конформер на месте, энергия напряжения сразу бы высвободилась.
В термодинамике спонтанный (самопроизвольный) процесс — это процесс, который происходит без какого-либо внешнего воздействия на систему. Более техническое определение: спонтанный процесс — это эволюция системы во времени, при которой она высвобождает свободную энергию и переходит в более низкое, более термодинамически стабильное энергетическое состояние. Соглашение о знаках для изменения свободной энергии следует общему соглашению для термодинамических измерений, в котором высвобождение свободной энергии из системы соответствует отрицательному изменению свободной энергии системы и положительному изменению свободной энергии среды.