
Транспозоны — участки ДНК организмов, способные к передвижению (транспозиции) и размножению в пределах генома. Транспозоны также известны под названием «прыгающие гены» и являются примерами мобильных генетических элементов.

Метилирование ДНК — это модификация молекулы ДНК без изменения самой нуклеотидной последовательности ДНК, что можно рассматривать как часть эпигенетической составляющей генома.

Эпигенетическим наследованием называют наследуемые изменения в фенотипе или экспрессии генов, вызываемые механизмами, отличными от изменения последовательности ДНК. Такие изменения могут оставаться видимыми в течение нескольких клеточных поколений или даже нескольких поколений живых существ.

ДНК-метилтрансфера́зы (ДНК-метилазы, англ. DNA methyltransferase, DNA MTase, DNMT) — группа ферментов, катализирующих метилирование нуклеотидных остатков в составе ДНК. Активность метилтрансфераз, заключающаяся в переносе метильных (CH3—) групп на азотистое основание цитозин в составе ДНК, ведет к изменению свойств ДНК, при этом изменяется активность, функции соответствующих генов, а также пространственная структура нуклеиновой кислоты (конформация).

Старение — рост риска смерти от естественных причин с течением времени, биологический процесс постепенного нарушения и потери важных функций организма или его частей, в частности, способности к размножению и регенерации. Вследствие старения организм становится менее приспособленным к условиям окружающей среды, уменьшает и теряет свою способность бороться с хищниками и противостоять болезням и травмам. Наука, которая изучает старение человека, называется геронтологией, а её раздел, который изучает непосредственно биологическую сторону старения, носит название биогеронтология.

Старение человека, как и старение других организмов, — это биологический процесс постепенной деградации частей и систем организма человека и последствия этого процесса. Физиология процесса старения аналогична физиологии старения других млекопитающих, однако некоторые аспекты этого процесса, например, потеря умственных способностей, имеют большее значение для человека. Для общества в целом существенное значение имеют социальные и экономические факторы.

Эухромати́н, также активный или «открытый хромати́н» — участки хроматина, которые представляет собой неплотную и легко упакованную форму, обогащённую генами и часто находящуюся в состоянии активной транскрипции. Эухроматин отличается от гетерохроматина, который плотно упакован и менее доступен для транскрипции. Около 92 % генома человека является эухроматичным.

Антисмысловы́е РНК — одноцепочечные РНК, которые комплементарны мРНК, транскрибируемой в клетке, или гену-мишени. Механизмы действия антисмысловых РНК весьма разнообразны, они могут как подавлять, так и активировать экспрессию гена-мишени. Природные антисмысловые РНК есть и у прокариот, и у эукариот; они относятся к длинным некодирующим РНК как РНК длиной более 200 нуклеотидов. Синтетические антисмысловые РНК нашли широкое применение у исследователей в качестве инструмента для нокдауна генов. Антисмысловые РНК также находят медицинское применение.

Модификацио́нная изме́нчивость — изменения в организме, вызванные влиянием окружающей среды и носящие в большинстве случаев адаптивный характер. При этом изменяется фенотип, но не изменяется генотип. В англоязычной литературе до 90-х годов XX в. в аналогичном значении нередко использовалось понятие "адаптивная модификация", в настоящее же время преимущественно используется понятие "фенотипическая пластичность". Именно этот класс явлений в первую очередь лежит в основе «определённой изменчивости», которую описывал Чарльз Дарвин, в противовес «неопределённой изменчивости», основанной, главным образом, на мутациях в генетическом аппарате.
Эпигенетика — раздел генетики. Эпигенетика изучает наследуемые изменения активности генов во время роста и деления клеток — изменения синтеза белков, вызванных механизмами, не изменяющими последовательность нуклеотидов в ДНК. Эпигенетические изменения сохраняются в ряде митотических делений соматических клеток, а также могут передаваться следующим поколениям. Регуляторы синтеза белка — метилирование и деметилирование ДНК, ацетилирование и деацетилирование гистонов, фосфорилирование и дефосфорилирование транскрипционных факторов и другие внутриклеточные механизмы.
Геномная нестабильность определяется высокой частотой мутаций в геноме клеточной линии. Эти мутации могут включать в себя изменения в последовательности нуклеиновых кислот, хромосомные перестройки или анеуплоидию. Геномная нестабильность является центральным фактором канцерогенеза, но также фактором некоторых нейродегенеративных заболеваний, таких как боковой амиотрофический склероз или нервно-мышечное заболевание миотоническая дистрофия.

8-оксо-2'-дезоксигуанозин (8-оксо-dG) — окисленное производное дезоксигуанозина. 8-оксо-dG является преобладающей формой свободнорадикального повреждения ДНК.
Биомаркер старения — это параметр организма, отражающий функциональное состояние организма лучше, чем хронологический возраст.

Эдриан Бёрд — британский генетик. Профессор Эдинбургского университета, член Лондонского королевского общества (1989) и иностранный член Национальной академии наук США (2016). Рыцарь-бакалавр (2014). Его исследования метилирования ДНК пролили свет на механизм возникновения синдрома Ретта.
Парамута́ция — взаимодействие двух аллелей одного локуса, при котором один аллель вызывает наследуемые изменения в другом аллеле. Эти изменения могут заключаться в изменении паттерна метилирования ДНК или модификации гистонов. Аллель, индуцирующий эти изменения, называется парамутагенным, а тот аллель, который эпигенетически изменяется, называется парамутабельным. Парамутабельный аллель может иметь изменённые уровни экспрессии, которые могут сохраняться у потомства, унаследовавшего этот аллель, даже в отсутствие парамутагенного аллеля. Парамутации могут иметь место, например, у генетически идентичных растений, демонстрирующих совершенно разные фенотипы.
Эпигенети́ческие часы́ — это совокупность эпигенетических меток ДНК, позволяющая определить биологический возраст ткани, клетки или органа. Наиболее известным примером эпигенетических часов являются часы Стива Хорвата, учитыващие 353 эпигенетических маркера человеческого генома. Разработаны и другие версии эпигенетических часов: часы К. Вейднер, основанные на метилировании трёх CpG динуклеотидов, часы И. Флорат, сложные часы Г. Ханнума и часы К. Джулиани, показатель которых рассчитываются по метилированию трёх генов в образцах ДНК из дентина.
Генети́ческие после́дствия Холоко́ста — гипотеза о межпоколенной передаче у ашкеназов тех стрессовых эффектов, что вызваны сильными психологическими и физическими травмами, полученными во время Второй мировой войны.
Эпигено́мика — раздел молекулярной биологии, изучающий совокупность эпигенетических модификаций генетического материала клетки с помощью высокопроизводительных методов. Эпигеномика аналогична геномике и протеомике, которые изучают геном и протеом клетки, соответственно.

Эпигенетика — это изучение изменений в экспрессии генов. Экспрессия происходит посредством метилирования ДНК, ацетилирования гистонов и модификации микро-РНК. Эпигенетические изменения подобного рода могут наследоваться и тогда они влияют на эволюцию. Современные исследования активно ведутся и уже понятно что эпигенетика оказывает большое влияние на все живые организмы.