Непреры́вное отображе́ние — отображение из одного пространства в другое, при котором близкие точки области определения переходят в близкие точки области значений.
Измери́мые функции представляют естественный класс функций, связывающих пространства с выделенными алгебрами множеств, в частности измеримыми пространствами.
Окре́стность точки — множество, содержащее данную точку, и близкие к ней. В разных разделах математики это понятие определяется по-разному.
Равноме́рная непреры́вность — это свойство функции быть одинаково непрерывной во всех точках области определения. В математическом анализе это понятие вводится для числовых функций, в функциональном анализе оно обобщается на произвольные метрические пространства.
Преде́лом фу́нкции в точке, предельной для области определения функции, называется такая величина, к которой значение рассматриваемой функции стремится при стремлении её аргумента к данной точке. Одно из основных понятий математического анализа.
Непрерывная функция — функция, которая меняется без мгновенных «скачков», то есть такая, малые изменения аргумента которой приводят к малым изменениям значения функции.
Откры́тое мно́жество — это множество, каждый элемент которого входит в него вместе с некоторой окрестностью. Например, внутренность шара является открытым множеством, а шар вместе с границей — не является открытым.
Грани́ца мно́жества A — множество всех точек, расположенных сколь угодно близко как к точкам во множестве A, так и к точкам вне множества A.
Ко́мпле́ксная пло́скость — геометрическое представление множества комплексных чисел .
Критерий Коши — ряд утверждений в математическом анализе:
- Критерий сходимости последовательности — на котором основывается определение полного метрического пространства.
- Критерий сходимости числовых рядов.
- Критерий Коши равномерной сходимости несобственных интегралов.
- Критерий Коши или число Коши — критерий подобия в механике сплошных сред.
Полунепреры́вность в математическом анализе — это свойство функции более слабое, чем непрерывность. Функция полунепрерывна снизу в точке, если значения функции в близких точках не сильно меньше значения функции в ней. Функция полунепрерывна сверху в точке, если значения функции в близких точках не сильно превышают значения функции в ней.
Вну́тренность множества — понятие в общей топологии, обозначающее объединение всех открытых подмножеств данного множества. Точки внутренности называются внутренними точками.
Леммой Гейне — Бореля называется следующий факт, играющий фундаментальную роль в анализе:
- Из всякой бесконечной системы интервалов, покрывающей отрезок числовой прямой, можно выбрать конечную подсистему, также покрывающую этот отрезок.
Функциональный ряд — ряд, каждым членом которого, в отличие от числового ряда, является не число, а функция .
Предел вдоль фильтра — обобщение понятия предела.
Теорема Сарда — теорема математического анализа с приложениями в дифференциальной геометрии и топологии, теории катастроф и теории динамических систем.
Концентрация меры — принцип, согласно которому при определённых достаточно общих и не слишком обременительных ограничениях значение функции большого числа переменных почти постоянно. Например, большинство пар точек на единичной сфере большой размерности находятся на расстоянии, близком к друг от друга.
Проективно расширенная числовая прямая — множество вещественных чисел , дополненное одной точкой, называемой бесконечностью.