Ква́нтовая (волнова́я) меха́ника — фундаментальная физическая теория, которая описывает природу в масштабе атомов и субатомных частиц. Она лежит в основании всей квантовой физики, включая квантовую химию, квантовую теорию поля, квантовую технологию и квантовую информатику.
Зако́ны Нью́то́на — три важнейших закона классической механики, которые позволяют записать уравнения движения для любой механической системы, если известны силы, действующие на составляющие её тела. Впервые в полной мере сформулированы Исааком Ньютоном в книге «Математические начала натуральной философии». В ньютоновском изложении механики, широко используемом и в настоящее время, эти законы являются аксиомами, базирующимися на обобщении экспериментальных результатов.
Волнова́я фу́нкция, или пси-фу́нкция — комплекснозначная функция, используемая в квантовой механике для математического описания чистого квантового состояния изолированной квантовомеханической системы. Наиболее распространённые символы для волновой функции — греческие буквы ψ и Ψ. Является коэффициентом разложения вектора состояния по базису. Например, при разложении по координатному базису:
При́нцип соотве́тствия в методологии науки — утверждение, что любая новая научная теория должна включать старую теорию и ее результаты как частный случай. Например, закон Бойля — Мариотта является частным случаем уравнения состояния идеального газа в приближении постоянной температуры; кислоты и основания Аррениуса являются частным случаем кислот и оснований Льюиса и т. п.
Ви́то Вольте́рра — итальянский математик и физик.
Опыт Штерна — Герлаха продемонстрировал, что пространственная ориентация углового момента квантована. Таким образом, было показано, что система атомного масштаба обладает квантовыми свойствами. В первоначальном опыте атомы серебра пропускались через неоднородное магнитное поле, которое отклоняло их до того, как они попадали на экран детектора, например на предметное стекло. Частицы с ненулевым магнитным моментом отклоняются от прямой траектории из-за градиента магнитного поля. Экран показывает дискретные точки на экране, а не непрерывное распределение благодаря их квантованному спину. Исторически этот опыт сыграл решающую роль в убеждении физиков в реальности квантования углового момента во всех системах атомного масштаба.
В квантовой механике матрица рассеяния, или S-матрица, — матрица величин, описывающая процесс перехода квантовомеханических систем из одних состояний в другие при их взаимодействии (рассеянии). Следует различать матрицу рассеяния, и S-параметры, которые описывают физические параметры электромагнитной волны в СВЧ технике и применяются для описания устройств СВЧ, связывающих линейной зависимостью комплексные амплитуды падающей и отражённой волн в клеммных плоскостях эквивалентного многополюсника.
Открытая система в квантовой механике — квантовая система, которая может обмениваться энергией и веществом с внешней средой. В определенном смысле всякая квантовая система может рассматриваться как открытая система, поскольку измерение любой динамической величины (наблюдаемой) связано с конечным необратимым изменением квантового состояния системы. Поэтому в отличие от классической механики, в которой измерения не играют существенной роли, теория открытых квантовых систем должна включать в себя теорию квантовых измерений.
Статистическая механика или статистическая термодинамика — механика больших ансамблей относительно простых систем, таких как атомы в кристалле, молекулы в газе, фотоны в лазерном пучке, звёзды в галактике, автомобили на шоссе. Статистическая механика использует статистические методы для определения свойств и поведения макроскопических физических систем, находящихся в термодинамическом равновесии, на основе их микроскопической структуры и законов движения, которые считаются заданными. Статистические методы были введены в этом контексте Максвеллом в серии из трех статей (1860—1879) и Больцманом в серии из четырёх статей (1870—1884), которые заложили основы кинетической теории газов. Классическая статистическая механика была основана Гиббсом (1902); а позднее описание микроскопических состояний на основе классической механики было исправлено и дополнено в соответствии с квантовой механикой. Термодинамика, кинетическая теория и статистическая механика — это дисциплины, связанные объектом исследования, но отличающиеся используемыми методами; часто они представлены вместе под общим названием статистической физики. Последовательное построение неравновесной статистической механики было выполнено Н. Н. Боголюбовым в 1946 году. При описании систем в рамках статистической механики используется понятие среднего по ансамблю. Основными уравнениями статистической механики являются уравнения Лиувилля и цепочка уравнений Боголюбова.
Наследственная механика — раздел механики сплошных сред, в котором изучаются такие процессы, когда состояние механической системы зависит от истории произведённых над системой действий. Математическим аппаратом наследственной механики являются теория интегральных уравнений, дробные дифференциальные уравнения. Основным объектом изучения наследственной механики являются вязкоупругие среды и материалы.
Вязкоупругость – это свойство материалов быть и вязким, и упругим при деформации. Вязкие материалы, такие как медь, при сопротивлении сдвигаются и натягиваются линейно во время напряжения. Упругие материалы тянутся во время растягивания и быстро возвращаются в обратное состояние, когда уходит напряжение. У вязкоупругих материалов свойства обоих элементов, и по существу, проявляют напряжение в зависимости от времени. В то время как упругость обычно является результатом растягивания вдоль кристаллографический плоскости в определенном твердом теле, вязкость является результатом диффузии атомов или молекул в аморфных материалах.
Перидинамика это формулировка механики сплошных сред которая ориентированна на неоднородную деформацию, а именно на трещины.
Нема́рковский проце́сс — случайный процесс, эволюция которого после любого заданного значения времени зависит от эволюции, предшествовавшей этому моменту времени. Другими словами, «будущее» немарковского процесса зависит от его «прошлого». Немарковский процесс — это случайный процесс с памятью, при этом, говоря о памяти процесса, имеется в виду, что от характера эволюции процесса в прошлом зависят его статистические характеристики в будущем. Немарковский процесс противопоставляется марковскому процессу.
Теория де Бройля — Бома, также известная как теория волны-пилота, механика Бома, интерпретация Бома и причинная интерпретация, является интерпретацией квантовой теории. В дополнение к волновой функции на пространстве всех возможных конфигураций, она постулирует реальную конфигурацию, которая существует, даже не будучи измеряемой. Эволюция конфигурации во времени определяется волновой функцией с помощью управляющего уравнения. Эволюция волновой функции во времени задаётся уравнением Шрёдингера. Теория названа в честь Луи де Бройля (1892—1987) и Дэвида Бома (1917—1992).
Никола́й Алексе́евич Кудряшо́в — российский математик и физик-теоретик, доктор физико-математических наук, профессор. Заслуженный деятель науки Российской Федерации, лауреат Государственной премии СССР, лауреат премии Правительства Российской Федерации в области образования. Заведующий кафедрой прикладной математики Национального исследовательского ядерного университета «МИФИ».
Транзакционная интерпрета́ция — интерпретация (толкование) квантовой механики, предложенная Джоном Крамером в 1986 году.
Хачатур Агавардович Хачатрян — армянский математик, доктор физико-математических наук (2011), профессор (2018), лауреат премии Президента Республики Армения (2019).
Шахматная доска Фейнмана — предложенная Ричардом Фейнманом модель, иллюстрирующая формулировку «суммы по путям» для интеграла по траекториям свободной частицы со спином ½, движущейся в одном пространственном измерении. Она обеспечивает представление решений уравнения Дирака в -мерном пространстве-времени в виде дискретных сумм.
Денис Николаевич Сидоров — российский математик, автор работ в области интегральных и дифференциальных уравнений, обратных задач, методов машинного обучения и математического моделирования в задачах энергетики, машиностроения и физики атмосферы. Главный научный сотрудник Института систем энергетики им. Л. А. Мелентьева СО РАН.
Э́ллиот Ге́ршель Либ — американский математик и физик, профессор Принстонского университета. Труды преимущественно в области математической физики, статистической механики, теории конденсированного состояния и функционального анализа. В частности, внёс вклад в такие темы, как квантовая механика, классическая проблема многих тел, структура атома, стабильность материи, функциональные неравенства, теория магнетизма, модель Хаббарда. Всего опубликовал более 400 книг и статей.