В этом глоссарии приведены определения основных терминов, используемых в общей топологии. Курсивом выделены ссылки внутри глоссария.
Метризуемое пространство — топологическое пространство, гомеоморфное некоторому метрическому пространству. Иначе говоря, пространство, топология которого порождается некоторой метрикой.
Аксио́мой вы́бора, англ. аббр. AC называется следующее высказывание теории множеств:
В этой статье приведены основные термины, используемые в теории групп. Курсив обозначает внутреннюю ссылку на данный глоссарий. В конце приводится таблица основных обозначений, применяемых в теории групп.
Паракомпактное пространство — топологическое пространство, в любое открытое покрытие которого можно вписать локально конечное открытое покрытие.
Части́чно упоря́доченное мно́жество — математическое понятие, которое формализует интуитивные идеи упорядочения, расположения элементов в определённой последовательности. Неформально, множество частично упорядочено, если указано, какие элементы следуют за какими. В общем случае может оказаться так, что некоторые пары элементов не связаны отношением «следует за».
Теория групп — раздел общей алгебры, изучающий алгебраические структуры, называемые группами, и их свойства. Группа является центральным понятием в общей алгебре, так как многие важные алгебраические структуры, такие как кольца, поля, векторные пространства, являются группами с расширенным набором операций и аксиом. Группы возникают во всех областях математики, и методы теории групп оказывают сильное влияние на многие разделы алгебры. В процессе развития теории групп построен мощный инструментарий, во многом определивший специфику общей алгебры в целом, сформирован собственный глоссарий, элементы которого активно заимствуются смежными разделами математики и приложениями. Наиболее развитые ветви теории групп — линейные алгебраические группы и группы Ли — стали самостоятельными областями математики.
В теории множеств порядковым числом, или ординалом называется порядковый тип вполне упорядоченного множества. Как правило, порядковые числа отождествляются с наследственно транзитивными множествами. Ординалы представляют собой одно из расширений натуральных чисел, отличающееся как от целых, так и от кардинальных чисел. Как и другие разновидности чисел, их можно складывать, перемножать и возводить в степень. Бесконечные порядковые числа называют трансфинитными. Ординалы играют ключевую роль в доказательстве многих теорем теории множеств — в частности, благодаря связанному с ними принципу трансфинитной индукции.
Леммой Гейне — Бореля называется следующий факт, играющий фундаментальную роль в анализе:
- Из всякой бесконечной системы интервалов, покрывающей отрезок числовой прямой, можно выбрать конечную подсистему, также покрывающую этот отрезок.
Кольцом частных S−1R коммутативного кольца R по мультипликативной системе называется пространство дробей с числителями из R и знаменателями из S с арифметическими операциями и отождествлениями, обычными для дробей.
Альтернати́ва Фредго́льма — совокупность теорем Фредгольма о разрешимости интегрального уравнения Фредгольма второго рода.
Дескрипцио́нная логика — язык представления знаний, позволяющий описывать понятия предметной области в недвусмысленном, формализованном виде, организованный по типу языков математической логики. Дескрипционные логики сочетают, с одной стороны, богатые выразительные возможности, а с другой — хорошие вычислительные свойства, такие как разрешимость и относительно невысокая вычислительная сложность основных логических проблем, что делает возможным их применение на практике, обеспечивая компромисс между выразительностью и разрешимостью. Могут быть рассмотрены как разрешимые фрагменты логики предикатов, синтаксически же они близки к модальным логикам.
Свобо́дный мо́дуль — модуль F над кольцом R, если он либо является нулевым, либо обладает базисом, то есть непустой системой S элементов e1,…ei…, которая является линейно независимой и порождает F. Само кольцо R, рассматриваемое как левый модуль над собой, очевидно обладает базисом, состоящим из одного единичного элемента кольца, а каждый модуль с конечным базисом из n элементов изоморфен прямой сумме Rn колец R, рассматриваемых как модули.
Формула включений-исключений — комбинаторная формула, позволяющая определить мощность объединения конечного числа конечных множеств, которые в общем случае могут пересекаться друг с другом. В теории вероятностей аналог принципа включений-исключений известен как формула Пуанкаре.
Разреши́мое множество — множество натуральных чисел, для которого существует алгоритм, получающий на вход любое натуральное число и через конечное число шагов завершающийся определением, принадлежит ли оно данному множеству. Другими словами, множество является разрешимым, если его характеристическая функция вычислима. Множество, не являющееся разрешимым, называется неразреши́мым. Также можно говорить о разрешимом множестве, состоящем из любых конструктивных объектов, кодируемых натуральными числами. Любое разрешимое множество является перечислимым и арифметическим. Разрешимые множества соответствуют уровню арифметической иерархии.
Иерархия вер — объект эпистемической теории игр, позволяющий определить категорию рациональности и общей веры в рациональность. Под верой понимается вероятностное распределение на неком пространстве неопределённости — например, на множестве стратегий другого игрока. Концепция иерархии вер введена Мертенсом и Замиром. Иерархию вер можно задать напрямую, либо с помощью дополнительной структуры — типов игроков. Веры о поведении оппонентов представляют собой первый уровень иерархии. Видно, что в таком построении интроспективные веры отсутствуют, то есть игрок не сталкивается с неопределённостью в отношении собственных стратегий. Второй уровень иерархии — веры игрока о стратегиях других игроков и их верах первого порядка. Следуя этому принципу, можно выстроить n-й уровень иерархии.
Теорема Фейта — Томпсона или теорема о нечётном порядке утверждает, что любая конечная группа нечётного порядка разрешима. Теорему доказали Вальтер Фейт и Джон Григгс Томпсон.