Глико́лиз, или путь Эмбдена — Мейергофа — Парнаса — процесс окисления глюкозы, при котором из одной молекулы глюкозы образуются две молекулы пировиноградной кислоты. Гликолиз состоит из цепи последовательных ферментативных реакций и сопровождается запасанием энергии в форме АТФ и НАДH. Гликолиз является универсальным путём катаболизма глюкозы и одним из трёх путей окисления глюкозы, встречающихся в живых клетках. Реакция гликолиза в суммарном виде выглядит следующим образом:
- Глюкоза + 2НАД+ + 2АДФ + 2Pi → 2 пируват + 2НАД*H + 2Н+ + 2АТФ + 2Н2O.
Глюконеогене́з — метаболический путь, приводящий к образованию глюкозы из неуглеводных соединений. Наряду с гликогенолизом, этот путь поддерживает в крови уровень глюкозы, необходимый для работы многих тканей и органов, в первую очередь, нервной ткани и эритроцитов. Он служит важным источником глюкозы в условиях недостаточного количества гликогена, например, после длительного голодания или тяжёлой физической работы. Глюконеогенез является обязательной частью цикла Кори, кроме того, этот процесс может быть использован для превращения пирувата, образованного при дезаминировании аминокислот аланина и серина.

Ци́кл трикарбо́новых кисло́т (сокр. ЦТК, цикл Кре́бса, цитра́тный цикл, цикл лимо́нной кислоты́) — центральная часть общего пути катаболизма, циклический биохимический процесс, в ходе которого ацетильные остатки (СН3СО-) окисляются до диоксида углерода (CO2). При этом за один цикл образуется 2 молекулы CO2, 3 НАДН, 1 ФАДH2 и 1 ГТФ (или АТФ). Электроны, находящиеся на НАДН и ФАДH2, в дальнейшем переносятся на дыхательную цепь, где в ходе реакций окислительного фосфорилирования образуется АТФ.

Броже́ние — биохимический процесс, основанный на окислительно-восстановительных превращениях органических соединений в анаэробных условиях. В ходе брожения происходит образование АТФ за счёт субстратного фосфорилирования. При брожении субстрат окисляется не полностью, поэтому брожение энергетически малоэффективно в сравнении с дыханием, в ходе которого АТФ образуется не за счёт субстратного фосфорилирования, а за счёт окислительного фосфорилирования. Таким образом, основной биологический смысл брожения заключается не в получении энергии, а в окислении НАДН и обеспечении гликолитических процессов окисленной формой (НАД+) этого кофермента в условиях отсутствия кислорода.

Пировиноградная кислота — химическое соединение с формулой СН3(СО)СООН, органическая кетокислота.

Анаэробы — организмы, получающие энергию при отсутствии доступа кислорода путём субстратного фосфорилирования, конечные продукты неполного окисления субстрата при этом могут быть окислены с получением большего количества энергии в виде АТФ.

Клеточное, или тканевое дыхание — совокупность биохимических реакций, протекающих в клетках живых организмов, в ходе которых происходит окисление углеводов, липидов и аминокислот до углекислого газа и воды, а также образование энергии. Высвобожденная энергия запасается в химических связях макроэргических соединений и может быть использована по мере необходимости. Входит в группу процессов катаболизма. О физиологических процессах транспортировки к клеткам многоклеточных организмов кислорода и удалению от них углекислого газа см. статью Дыхание.
Анаэробное дыхание — это биохимический процесс окисления органических субстратов или молекулярного водорода с использованием в дыхательной ЭТЦ в качестве конечного акцептора электронов вместо O2 других окислителей неорганической или органической природы. Как и в случае аэробного дыхания, выделяющаяся в ходе реакции свободная энергия запасается в виде трансмембранного протонного потенциала, использующегося АТФ-синтазой для синтеза АТФ.
Молочноки́слое броже́ние — вид брожения, конечным продуктом при котором выступает молочная кислота. Существует два основных вида молочнокислого брожения: гомоферментативное, при котором молочная кислота составляет до 90 % продукта, и гетероферментативное, при котором на её долю приходится лишь половина. Молочнокислое брожение активно используется человеком для приготовления кисломолочных продуктов и других продуктов питания.

Факультативные анаэробы — организмы, энергетические циклы которых при отсутствии кислорода проходят по анаэробному пути (брожение), а при наличии кислорода способные получать энергию за счёт дыхания. Примерами таких организмов этой группы являются энтеробактерии. Около 80—90 % бактерий, развивающихся в приливно-отливной зоне эстуариев относят к факультативных аэробам.

Спиртово́е броже́ние — вид брожения, при котором углеводы, преимущественно глюкоза, преобразуются в молекулы этанола и углекислого газа. В подавляющем большинстве случаев спиртовое брожение осуществляют дрожжи. Кислород в данном процессе не нужен, а значит, спиртовое брожение — анаэробный процесс. Побочные продукты процесса ферментации включают тепло, углекислый газ, воду и спирт. Известны модификации спиртового брожения, при котором вместо этанола или наряду с ним под действием определённых химических веществ дрожжи начинают производить глицерин. Спиртовое брожение имеет огромное промышленное значение, издревле используется человеком для получения разнообразных алкогольных напитков и в хлебопечении.
Аэробное упражнение — любой вид физического упражнения относительно низкой интенсивности, где кислород используется как основной источник энергии для поддержания мышечной двигательной деятельности. Аэробный означает «с кислородом», подразумевая, что одного кислорода достаточно для адекватного удовлетворения потребности в энергии во время физического упражнения. Как правило, упражнения легкой или умеренной интенсивности, которые могут поддерживаться в основном аэробным метаболизмом, могут выполняться в течение длительного периода времени. Противоположностью аэробного упражнения является анаэробное упражнение. К числу аэробных упражнений относят ходьбу или походы, бег, бег на месте, плавание, коньки, подъем по ступенькам, греблю, катание на скейтборде, роликовых коньках, танцы, баскетбол, теннис

Маслянокислое брожение — метаболический путь превращения органических веществ облигатно анаэробных бактерий, конечными продуктами которого являются АТФ, а также масляная кислота, бутанол, ацетон, изопропанол, этанол, уксусная кислота, углекислый газ и водород. Этот тип метаболизма характерен в основном для бактерий рода Clostridium, таких как C. pasteurianum, C. buryricum, C. acetobutylicum, C. pectinovorum, а также обитателей рубца жвачных, протистов Butyrivibrio и бактерий микрофлоры кишечника человека Eubacterium и Fusobacterium.. Маслянокисле брожение было открыто Луи Пастером в 1861 году.
Углеводный обмен, или метаболизм углеводов в организмах животных и человека. Метаболизм углеводов в организме человека состоит из следующих процессов:
- Расщепление в пищеварительном тракте поступающих с пищей поли- и дисахаридов до моносахаридов, дальнейшее всасывание моносахаридов из кишечника в кровь.
- Синтез и распад гликогена в тканях, прежде всего в печени.
- Гликолиз — распад глюкозы. Первоначально под этим термином обозначали только анаэробное брожение, которое завершается образованием молочной кислоты (лактата) или этанола и углекислого газа. В настоящее время понятие «гликолиз» используется более широко для описания распада глюкозы, проходящего через образование глюкозо-6-фосфата, фруктозо-1,6-дифосфата и пирувата как в отсутствие, так и в присутствии кислорода. В последнем случае употребляется термин «аэробный гликолиз», в отличие от «анаэробного гликолиза», завершающегося образованием молочной кислоты или лактата.
- Анаэробный путь прямого окисления глюкозы или, как его называют, пентозофосфатный путь.
- Взаимопревращение гексоз.
- Анаэробный метаболизм пирувата. Этот процесс выходит за рамки углеводного обмена, однако может рассматриваться как завершающая его стадия: окисление продукта гликолиза — пирувата.
- Глюконеогенез — образование углеводов из неуглеводных продуктов.
Путь Э́нтнера — Ду́дорова, или КДФГ-путь — путь окисления глюкозы, приводящий к образованию из одной молекулы глюкозы двух молекул пирувата, одной молекулы АТФ и двух молекул восстановленных пиридиновых нуклеотидов. Хотя ранее считалось, что он имеет место лишь у небольшого числа грамотрицательных бактерий, в настоящее время установлено, что этот путь распространён в природе чрезвычайно широко и используется различными группами грамположительных и грамотрицательных бактерий, а также некоторыми археями и даже эукариотами.

Окисли́тельное декарбоксили́рование пирува́та — биохимический процесс, заключающийся в отщеплении одной молекулы углекислого газа (СО2) от молекулы пирувата и присоединении к декарбоксилированному пирувату кофермента А (КоА) с образованием ацетил-КоА; является промежуточным этапом между гликолизом и циклом трикарбоновых кислот. Декарбоксилирование пирувата осуществляет сложный пируватдегидрогеназный комплекс (ПДК), включающий в себя 3 фермента и 2 вспомогательных белка, а для его функционирования необходимы 5 кофакторов. Суммарное уравнение окислительного декарбоксилирования пирувата таково:
Эффект Кребтри — торможение дыхания и активация брожения у дрожжей в высокосахаристой среде. Назван в честь английского биохимика Герберта Грейса Кребтри.
Эффект Варбурга — склонность большинства раковых клеток производить энергию преимущественно с помощью очень активного гликолиза с последующим образованием молочной кислоты, а не посредством медленного гликолиза и окисления пирувата в митохондриях с использованием кислорода как в большинстве нормальных клеток. В клетках быстро растущей злокачественной опухоли уровень гликолиза почти в 200 раз выше, чем в нормальных тканях. При этом гликолиз остаётся предпочтительным даже в условиях, когда кислород в избытке.
Пропионовоки́слое броже́ние — вид брожения, при котором субстрат сбраживается до пропионовой кислоты (пропионата) и уксусной кислоты (ацетата). Пропионовокислое брожение осуществляют преимущественно бактерии подпорядка Propionibacterineae класса Actinobacteria, обитающие в рубце и кишечнике жвачных животных.

Пируваткиназа — это фермент из класса трансфераз, участвующий в последней стадии гликолиза. Он катализирует перенос фосфатной группы из фосфоенолпирувата (PEP) в аденозиндифосфат (ADP), образуя одну молекулу пирувата и одну молекулу АТФ. Пируваткиназа присутствует у животных в четырёх различных тканеспецифичных изозимах, каждый из которых обладает определёнными кинетическими свойствами, необходимыми для адаптации к изменениям метаболических потребностей различных тканей.