Теория возмущений — метод приближённого решения задач теоретической физики, применимый в том случае, когда в задаче присутствует малый параметр, причём в пренебрежении этим параметром задача имеет точное решение.
Дифференциальное исчисление — раздел математического анализа, в котором изучаются понятия производной и дифференциала и способы их применения к исследованию функций. Формирование дифференциального исчисления связано с именами Исаака Ньютона и Готфрида Лейбница. Именно они чётко сформировали основные положения и указали на взаимно-обратный характер дифференцирования и интегрирования. Создание дифференциального исчисления открыло новую эпоху в развитии математики, положив начало теории рядов, теории дифференциальных уравнений и многому другому. Методы математического анализа нашли применение во всех разделах математики и расширили применение математики в естественных науках и технике.
Уравне́ния Ма́ксвелла — система уравнений в дифференциальной или интегральной форме, описывающих электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах. Вместе с выражением для силы Лоренца, задающим меру воздействия электромагнитного поля на заряженные частицы, эти уравнения образуют полную систему уравнений классической электродинамики, называемую иногда уравнениями Максвелла — Лоренца. Уравнения, сформулированные Джеймсом Клерком Максвеллом на основе накопленных к середине XIX века экспериментальных результатов, сыграли ключевую роль в развитии представлений теоретической физики и оказали сильное, зачастую решающее влияние не только на все области физики, непосредственно связанные с электромагнетизмом, но и на многие возникшие впоследствии фундаментальные теории, предмет которых не сводился к электромагнетизму.
Уравнение с малым параметром — скалярное или векторное дифференциальное уравнение, в котором имеется коэффициент, малый по сравнению с другими. Этот параметр может стоять в правой части дифференциального уравнения, при этом говорят о регулярном возмущении уравнения. Кроме того, малый параметр может стоят при старшей производной, в этом случае говорят о сингулярном возмущении.
Ячейки Бенара или Рэлея — Бенара — возникновение упорядоченности в виде конвективных ячеек в форме цилиндрических валов или правильных шестигранных структур в слое вязкой жидкости с вертикальным градиентом температуры, то есть равномерно подогреваемой снизу.
В теории дифференциальных уравнений, начальные и граничные условия — дополнение к основному дифференциальному уравнению, задающее его поведение в начальный момент времени или на границе рассматриваемой области соответственно.
Самофокусировка света — один из эффектов самовоздействия света, состоящий в концентрации энергии светового пучка в нелинейной среде, показатель преломления которой возрастает при увеличении интенсивности света. Явление самофокусировки было предсказано советским физиком-теоретиком Г. А. Аскарьяном в 1961 году и впервые наблюдалось Н. Ф. Пилипецким и А. Р. Рустамовым в 1965 году. Основы математически строгого описания теории были заложены В. И. Талановым.
Дельтообра́зный потенциа́л в ква́нтовой меха́нике — общее название профилей потенциальной энергии частицы, задаваемых выражениями с дельта-функцией Дирака. Такими профилями моделируется физическая ситуация, когда наличествуют очень узкие и острые максимумы или минимумы потенциала.
Нелинейная динамика — междисциплинарная наука, в которой изучаются свойства нелинейных динамических систем. Нелинейная динамика использует для описания систем нелинейные модели, обычно описываемые дифференциальными уравнениями и дискретными отображениями. Нелинейная динамика включает в себя теорию устойчивости, теорию динамического хаоса, эргодическую теорию, теорию интегрируемых систем.
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики.
Быстро-медленная система в математике — это динамическая система, в которой присутствуют процессы, происходящие в разных масштабах времени. Фазовые переменные такой системы делятся на два класса: «быстрые» и «медленные» переменные. Скорость изменения «быстрых» переменных почти во всех точках фазового пространства много больше скорости изменения «медленных» переменных. Траектории таких систем состоят из чередующихся участков медленного «дрейфа» и быстрых «срывов». Быстро-медленные системы описывают различные физические и иные явления, в которых постепенное эволюционное накопление малых изменений со временем приводит к скачкообразному переходу системы на новый динамический режим.
Нормальная форма дифференциальных уравнений есть наипростейшая эквивалентная форма исходных уравнений. Нормальная форма получается с помощью специальных замен зависимых и независимых переменных задачи с целью максимального упрощения структуры уравнений. В математике эти замены переменных связаны с инфинитезимальными преобразованиями групп Ли. В физике вопросы, связанные с нормальной формой, получили отражение в теореме Эмми Нётер.
Андреевское отражение — процесс отражения электрона, падающего из нормального металла на границу со сверхпроводником, при котором электрон превращается в дырку, меняет обе компоненты скорости на противоположные, а в сверхпроводник попадает два электрона. Названо по имени Александра Фёдоровича Андреева, теоретически предсказавшего такой тип отражения в 1964 году . В то же время существует зеркальное андреевское отражение, при котором дырка не меняет проекцию скорости на границу. Этот эффект предсказан Бинаккером в 2006 году.
Теорема Хольмгрена — теорема о единственности решения задачи Коши для дифференциального уравнения с частными производными в случае аналитичности коэффициентов дифференциального оператора.
Молекулярные орбитали — математическая функция, описывающая волновое поведение электронов в молекуле.
МО ЛКАО или МО ЛКБФ — простейший метод определения волновых функций молекулярных орбиталей. Рассматривает волновые функции молекулярных орбиталей как линейные комбинации волновых функций атомных орбиталей. Для точного определения волновой функции молекулярной орбитали необходимо решить сложную даже для простейших молекул задачу о движении одного электрона в самосогласованном поле, создаваемым атомными ядрами и остальными электронами всех атомов, входящих в молекулу. Поэтому в методе МО ЛКАО используются упрощающие исходную задачу предположения.
Звёзды различных масс и возрастов обладают различной внутренней структурой. Модели строения звезды подробно описывают внутреннюю структуру звезды и предоставляют подробные сведения о светимости, цвете и дальнейшей эволюции звезды.
Основанная на плотности пространственная кластеризация для приложений с шумами — это алгоритм кластеризации данных, который предложили Маритин Эстер, Ганс-Петер Кригель, Ёрг Сандер и Сяовэй Су в 1996. Это алгоритм кластеризации, основанной на плотности — если дан набор точек в некотором пространстве, алгоритм группирует вместе точки, которые тесно расположены, помечая как выбросы точки, которые находятся одиноко в областях с малой плотностью . DBSCAN является одним из наиболее часто используемых алгоритмов кластеризации, и наиболее часто упоминается в научной литературе.
Метод фиктивных областей — метод приближённого решения задач математической физики в геометрически сложных областях, основанный на переходе к задаче в геометрически более простой области, целиком содержащей исходную. Преимуществом этого метода является удобство составления универсальных программ для численного решения широкого класса краевых задач математической физики, которые перестают зависеть от конкретного вида рассматриваемой области. Недостатком этого метода является низкая точность приближенного решения и сложность создания разностных схем и численного решения задач.
Динамические стохастические модели общего равновесия — современные макроэкономические модели, параметры которых основаны на моделировании поведения экономических агентов на микроуровне, предусматривающие также моделирование различных стохастических «шоков».