Ядро́ — внутренняя, центральная часть чего-либо.
- Атомное ядро — часть атома, имеющая положительный электрический заряд; в ней сосредоточена почти вся его масса.
- Ядро планеты — центральная часть планеты, обладающая высокой плотностью.
- Ядро Земли — центральная, наиболее глубокая часть планеты Земля.
- Ядро кометы — твёрдая часть кометы, сравнительно небольшого размера.
- Пушечное ядро — старинный оружейный снаряд в виде шарообразного литого тела.
- Спортивное ядро — легкоатлетический снаряд.
- «Ядро» — футбольный клуб из Санкт-Петербурга.
- Ядро (экономика) — множество допустимых распределений ресурсов в экономике, которые не могут быть улучшены никакой коалицией агентов.
Функциона́льный ана́лиз — раздел анализа, в котором изучаются бесконечномерные топологические векторные пространства и их отображения. Наиболее важными примерами таких пространств являются пространства функций.
Интегра́льный опера́тор Фредго́льма — вполне непрерывный линейный интегральный оператор вида
Теория операторов — раздел функционального анализа, который изучает свойства непрерывных линейных отображений между нормированными пространствами. Вообще говоря, оператор — это аналог самой обычной функции или матрицы в конечномерном пространстве. Но оператор может действовать и в бесконечномерных пространствах.
Компа́ктный опера́тор — понятие функционального анализа. Компактные операторы естественно возникают при изучении интегральных уравнений, а их свойства схожи со свойствами операторов в конечномерных пространствах. Компактные операторы также часто называют вполне непрерывными.
Операторная норма — норма определённая на ограниченных линейных операторах из одного нормированного пространства в другое. Также называется операторной, подчинённой или индуцированной нормой.
Коне́чноме́рное простра́нство — это векторное пространство, в котором имеется конечный базис — порождающая (полная) линейно независимая система векторов. Другими словами, в таком пространстве существует конечная линейно независимая система векторов, линейной комбинацией которых можно представить любой вектор данного пространства.
Бесконечномерное пространство — векторное пространство c бесконечно большой размерностью. Изучение бесконечномерных пространств и их отображений является главной задачей функционального анализа. Наиболее простыми бесконечномерными пространствами являются гильбертовы пространства, наиболее близкие по свойствам к конечномерным евклидовым пространствам.
Теоре́ма Ги́льберта-Шми́дта распространяет на вполне непрерывные симметричные операторы в гильбертовом пространстве известный факт о приведении матрицы самосопряженного оператора в конечномерном евклидовом пространстве к диагональной форме в некотором ортонормированном базисе.
Альтернати́ва Фредго́льма — совокупность теорем Фредгольма о разрешимости интегрального уравнения Фредгольма второго рода.
Юрий Львович Далецкий — советский и украинский математик, академик НАН Украины. Специалист в области дифференциальных уравнений в бесконечномерных пространствах.
Анализ — объединение нескольких разделов математики, исторически выросшее из классического математического анализа и охватывающее, кроме дифференциального и интегрального исчислений, входящих в классическую часть, такие разделы, как теории функций вещественной и комплексной переменной, теории дифференциальных и интегральных уравнений, вариационное исчисление, гармонический анализ, функциональный анализ, теорию динамических систем и эргодическую теорию, глобальный анализ. Нестандартный анализ находится на стыке математической логики и анализа, применяет методы теории моделей для альтернативной формализации, прежде всего, классических разделов.
Конечномерный оператор — ограниченный линейный оператор в банаховом пространстве, множество значений которого конечномерно.
Группа Лоренца является группой Ли симметрий пространства-времени в специальной теории относительности. Эта группа может быть реализована как набор матриц, линейных преобразований или унитарных операторов на некотором гильбертовом пространстве. Группа имеет различные представления. В любой релятивистски инвариантной физической теории эти представления как-то должны быть отражены. Сама физика должна быть сделана на их основе. Более того, специальная теория относительности вместе с квантовой механикой являются двумя физическими теориями, которые тщательно проверены и объединение этих двух теорий сводится к изучению бесконечномерных унитарных представлений группы Лоренца. Это имеет как историческую важность в основном течении в теоретической физике, так и связи с более спекулятивными теориями настоящего времени.
Множество называется вполне ограниченным, если для любого положительного ε существует конечная ε-сеть для этого множества.
Август Петрович Хромов — доктор физико-математических наук, профессор, заведующий кафедрой дифференциальных уравнений и прикладной математики Саратовского государственного университета им. Н. Г. Чернышевского, заслуженный деятель науки РФ (1997).
Представление группы Ли — это линейное действие группы Ли на векторном пространстве или, что то же самое, гладкий гомоморфизм группы Ли в группу обратимых операторов на векторном пространстве. Играет важную роль в изучении непрерывной симметрии в математике и теоретической физике. Представления групп Ли изучены довольно хорошо, основным инструментом их изучения является использование соответствующих «инфинитезимальных» представлений алгебр Ли.
Операторы рождения и операторы уничтожения — это математические операторы, которые широко применяются в квантовой механике, особенно при изучении квантовых гармонических осцилляторов и многочастичных систем. В квантовой теории поля волновые функции квантованных полей имеют операторный смысл и распадаются на операторы рождения и уничтожения частиц. Оператор уничтожения уменьшает количество частиц в данном состоянии на единицу. Оператор рождения увеличивает количество частиц в заданном состоянии на единицу, он сопряжен к оператору уничтожения. Эти операторы используются вместо волновых функций во многих областях физики и химии. Понятие операторов рождения и уничтожения было введено в науку Полем Дираком.