Математи́ческая ло́гика — раздел математики, изучающий математические обозначения, формальные системы, доказуемость математических суждений, природу математического доказательства в целом, вычислимость и прочие аспекты оснований математики.
Ло́гика (др.-греч. λογική — «наука о правильном мышлении»; «способность к рассуждению»; от λόγος «учение, наука») — философская дисциплина и нормативная наука о законах, формах и приёмах интеллектуальной деятельности.
Теорема Гёделя о неполноте и вторая теорема Гёделя — две теоремы математической логики о принципиальных ограничениях формальной арифметики и, как следствие, всякой формальной системы, в которой можно определить основные арифметические понятия: натуральные числа, 0, 1, сложение и умножение.
Интуициони́стская ло́гика — формальная система, отражающая некоторые способы рассуждений, приемлемые с точки зрения интуиционизма. Предложена А. Гейтингом в 1930 году.
Форма́льная ло́гика — наука о правилах преобразования высказываний, сохраняющих их истинностное значение безотносительно к содержанию входящих в эти высказывания понятий, а также конструирование этих правил.
Ио́сиф Нусимович Бро́дский — советский и российский логик. Доктор философских наук (1974), профессор кафедры логики философского факультета СПбГУ. Один из основоположников символической логики в России, один из основателей современной петербургской логической школы.
Евге́ний Казими́рович Войшви́лло — советский и российский философ, логик, доктор философских наук (1967), профессор МГУ имени М. В. Ломоносова (1968). Лауреат Ломоносовской премии I-й степени (1992). Заслуженный профессор МГУ имени М. В. Ломоносова. Ветеран Великой Отечественной войны, фронтовик.
Теория доказательств — раздел математической логики, представляющий доказательства в виде формальных математических объектов, осуществляя их анализ с помощью математических методов. Доказательства обычно представляются в виде индуктивно определённых структур данных, таких как списки и деревья, созданных в соответствии с аксиомами и правилами вывода формальных систем. Таким образом, теория доказательств является синтаксической, в отличие от семантической теории моделей. Вместе с теорией моделей, аксиоматической теорией множеств и теорией вычислений, теория доказательств является одним из так называемых «четырёх столпов» математики. Теория доказательств использует точное определение понятия доказательства при доказательстве невозможности доказательства того или иного предложения в рамках заданной математической теории.
Ви́ктор Константи́нович Финн — советский и российский философ, учёный, доктор технических наук, заведующий отделением интеллектуальных систем РГГУ, член Диссертационного совета Д 002.073.05 по защите докторских диссертаций при ФИЦ ИУ РАН, член редколлегии журнала «Научно-техническая информация», член Научного совета Российской ассоциации искусственного интеллекта, член Международной ассоциации оснований науки, заслуженный деятель науки РФ.
Основа́ния матема́тики — система общих для всей математики понятий, концепций и методов, с помощью которых строятся различные её разделы.
Герхард Карл Эрих Генцен — немецкий математик и логик, внёс большой вклад в исследование оснований математики и развитие теории доказательств, является создателем исчисления секвенций.
Метало́гика — изучение метатеории логики. В то время, как логика представляет собой исследование способов применения логических систем для рассуждения, доказательств и опровержений, металогика исследует свойства самих логических систем.
Львовско-Варшавская школа — польское направление в логическом позитивизме, у истоков которого стоял Казимир Твардовский — ученик Франца Брентано.
Устранимость сечений — свойство логических исчислений, согласно которому всякую секвенцию, выводимую в данном исчислении, можно вывести без применения правила сечений. Играет фундаментальную роль в теории доказательств и важную методологическую роль в математической логике в целом в связи с тем, что предоставляет конструктивный метод доказательства непротиворечивости, в частности, для классической и интуиционистской логик первого порядка.
Интуициони́зм — совокупность философских и математических взглядов, рассматривающих математические суждения с позиций «интуитивной убедительности». Различаются две трактовки интуиционизма: интуитивная убедительность, которая не связана с вопросом существования объектов, и наглядная умственная убедительность.
Неклассические логики — группа формальных систем, существенно отличающихся от классических логик путём различных вариаций законов и правил. Благодаря этим вариациям возможно построение различных моделей логических выводов и логической истины.
Логическая семантика — раздел логики, в котором изучаются отношения языковых символов к обозначаемым ими объектам и выражаемому ими содержанию.
Исчисление секвенций — вариант логических исчислений, использующий для доказательства утверждений не произвольные цепочки тавтологий, а последовательности условных суждений — секвенций. Наиболее известные исчисления секвенций — и для классического и интуиционистского исчислений предикатов — построены Генценом в 1934 году, позднее сформулированы секвенциальные варианты для широкого класса прикладных исчислений, теорий типов, неклассических логик.
Натуральный вывод — тип логических исчислений, использующий для доказательства утверждений правила вывода, близкие к обычным содержательным методам рассуждений.
Паранепротиворечивая логика — стремление формальной системы к решению проблемы противоречий, с помощью метода дифференциации. Представляет собой область, занимающуюся изучением и развитием «устойчивым к противоречиям» систем, исключающих принцип взрыва.