Арифме́тика — раздел математики, изучающий числа, их отношения и свойства. Предметом арифметики является понятие числа и его свойства. В арифметике рассматриваются измерения, вычислительные операции и приёмы вычислений. Изучением свойств отдельных целых чисел занимается высшая арифметика, или теория чисел. Теоретическая арифметика уделяет внимание определению и анализу понятия числа, в то время как формальная арифметика оперирует логическими построениями предикатов и аксиом. Арифметика является древнейшей и одной из основных математических наук; она тесно связана с алгеброй, геометрией и теорией чисел.
Основна́я теоре́ма а́лгебры — утверждение о том, что поле комплексных чисел алгебраически замкнуто, то есть что всякий отличный от константы многочлен с комплексными коэффициентами имеет по крайней мере один корень в поле комплексных чисел. Утверждение справедливо и для многочленов с вещественными коэффициентами, так как всякое вещественное число является комплексным с нулевой мнимой частью.
Данная статья представляет собой обзор основных событий и тенденций в истории математики с древнейших времён до наших дней.
Джон Не́пер — шотландский математик, один из изобретателей логарифмов, первый публикатор логарифмических таблиц, астроном. 8-й лэрд Мерчистона из клана Непер.
Питер Барлоу — английский физик и математик.
Фахр ад-Дин Абу Бакр Мухаммад ибн ал-Хусайн ал-Караджи — персидский математик, выходец из города Карадж. Работал в Рее и Исфахане при тюркской империи Газневидов.
История арифметики охватывает период от возникновения счёта до формального определения чисел и арифметических операций над ними с помощью системы аксиом. Арифметика — наука о числах, их свойствах и отношениях — является одной из основных математических наук. Она тесно связана с алгеброй и теорией чисел.
История логарифмов как алгебраического понятия прослеживается с античных времён. Идейным источником и стимулом применения логарифмов послужил тот факт, известный ещё во времена Архимеда, что при перемножении степеней с одинаковым основанием их показатели складываются: .
История теории вероятностей отмечена многими уникальными особенностями. Прежде всего, в отличие от появившихся примерно в то же время других разделов математики, у теории вероятностей по существу не было античных или средневековых предшественников, она целиком — создание Нового времени. Долгое время теория вероятностей считалась чисто опытной наукой и «не совсем математикой», её строгое обоснование было разработано только в 1929 году, то есть даже позже, чем аксиоматика теории множеств (1922). В наши дни теория вероятностей занимает одно из первых мест в прикладных науках по широте своей области применения; «нет почти ни одной естественной науки, в которой так или иначе не применялись бы вероятностные методы».
В 1825 году были различные научные и технологические события, некоторые из которых представлены ниже.
Курно́сый куб, или плосконо́сый куб, — полуправильный многогранник с 38 гранями, составленный из 6 квадратов и 32 правильных треугольников. В каждой из его 24 одинаковых вершин сходятся одна квадратная грань и четыре треугольных. Треугольные грани делятся на две группы: 8 из них окружены только другими треугольными, остальные 24 — квадратной и двумя треугольными.
В 1749 году произошли различные научные и технологические события, некоторые из которых представлены ниже.
«Арифметические исследования» — первый крупный труд 24-летнего немецкого математика Карла Фридриха Гаусса, опубликованный в Лейпциге в сентябре 1801 года. Эта монография стала ключевым этапом в развитии теории чисел; она содержала как обстоятельное изложение результатов предшественников, так и собственные глубокие результаты Гаусса. Среди последних особенную важность представляли:
- Квадратичный закон взаимности, основа теории квадратичных вычетов. Гаусс впервые дал его доказательство.
- Теория композиции классов и родов квадратичных форм, ставшая важнейшим вкладом в создание теории алгебраических чисел.
- Теория деления круга. Это не только пример приложения общих методов, но и, как далее выяснилось, прообраз на частном примере открытой в 1830-х годах общей теории Галуа.
Таблицы Бра́диса — математическое пособие, в котором собраны таблицы, необходимые для работы по курсу математики и для практических вычислений, не требующих большой точности. Автор — Владимир Модестович Брадис (1890—1975), советский математик и педагог, член-корреспондент АПН СССР (1955). Часть вычислений выполнили его ученики — студенты Тверского (Калининского) института народного образования. Точность таблиц — 4 знака после запятой (четырёхзначные).