Метаболи́зм, или обме́н веще́ств, — это химические реакции, поддерживающие жизнь в живом организме. Эти процессы позволяют организмам расти и размножаться, сохранять свои структуры и отвечать на воздействия окружающей среды.
Глико́лиз, или путь Эмбдена — Мейергофа — Парнаса — процесс окисления глюкозы, при котором из одной молекулы глюкозы образуются две молекулы пировиноградной кислоты. Гликолиз состоит из цепи последовательных ферментативных реакций и сопровождается запасанием энергии в форме АТФ и НАДH. Гликолиз является универсальным путём катаболизма глюкозы и одним из трёх путей окисления глюкозы, встречающихся в живых клетках. Реакция гликолиза в суммарном виде выглядит следующим образом:
- Глюкоза + 2НАД+ + 2АДФ + 2Pi → 2 пируват + 2НАД*H + 2Н+ + 2АТФ + 2Н2O.
Ци́кл трикарбо́новых кисло́т (сокр. ЦТК, цикл Кре́бса, цитра́тный цикл, цикл лимо́нной кислоты́) — центральная часть общего пути катаболизма, циклический биохимический процесс, в ходе которого ацетильные остатки (СН3СО-) окисляются до диоксида углерода (CO2). При этом за один цикл образуется 2 молекулы CO2, 3 НАДН, 1 ФАДH2 и 1 ГТФ (или АТФ). Электроны, находящиеся на НАДН и ФАДH2, в дальнейшем переносятся на дыхательную цепь, где в ходе реакций окислительного фосфорилирования образуется АТФ.
Глицеральдегид-3-фосфат (глицераль-3-фосфат) — фосфотриоза, ключевой интермедиат метаболизма гексоз во многих биохимических процессах: гликолиз, глюконеогенез, фотосинтез.
Сери́н — гидроксиаминокислота, существует в виде двух оптических изомеров — L и D.
Кофермент A — кофермент ацетилирования; один из важнейших коферментов, принимающий участие в реакциях переноса ацильных групп при синтезе и окислении жирных кислот и окислении пирувата в цикле лимонной кислоты.
Фотодыхание — стимулируемое светом выделение углекислого газа и поглощение кислорода у растений преимущественно с С3-типом фотосинтеза. Также под фотодыханием понимают биохимический путь, связанный с регенерацией одной молекулы 3-фосфоглицериновой кислоты (С3) из двух молекул гликолевой кислоты (С2) и лежащий в основе вышеописанного газообмена. Наличие биохимического механизма фотодыхания обусловлено значительной оксигеназной активностью РуБисКО, ключевого фермента цикла Кальвина.
Рибулозобисфосфаткарбоксилаза, рубиско — фермент, катализирующий присоединение углекислого газа к рибулозо-1,5-бисфосфату на первой стадии цикла Кальвина, а также реакцию окисления рибулозобифосфата на первой стадии процесса фотодыхания. Является одним из важнейших ферментов в природе, поскольку играет центральную роль в основном механизме поступления неорганического углерода в биологический круговорот. Рибулозобисфосфаткарбоксилаза является основным ферментом листьев растений и поэтому считается наиболее распространённым ферментом на Земле.
Восстановительный пентозофосфатный цикл, или цикл Кальвина — серия биохимических реакций, осуществляемая при фотосинтезе растениями, цианобактериями, прохлорофитами и пурпурными бактериями, а также многими бактериями-хемосинтетиками, является наиболее распространённым из механизмов автотрофной фиксации углекислого газа.
Трансаминирование — биохимическая ферментативная реакция обратимого переноса аминогруппы с аминокислоты на кетокислоту без промежуточного образования аммиака.
Изомеразы (КФ5) — ферменты, катализирующие структурные превращения изомеров. Изомеразы катализируют реакции, подобные следующей: A → B
, где B является изомером A.
Фруктозо-1,6-бисфосфат — органическое соединение, сложный эфир фруктозы и ортофосфорной кислоты, продукт ферментативного окисления глюкозы, важнейший интермедиат гликолиза. Образуется в ходе фосфофруктокиназной реакции из фруктозо-6-фосфата с использованием энергии аденозинтрифосфорной кислоты (АТФ). Фактически эта реакция является лимитирующей в скорости протекания гликолиза и её регуляция определяет интенсивность гликолиза в целом. Способность к образованию и метаболизму фруктозо-1,6-бисфосфата различна в разных органах млекопитающих. В живых организмах присутствует единственная биологически активная форма этого соединения — β-D изомер.
Углеводный обмен, или метаболизм углеводов в организмах животных и человека. Метаболизм углеводов в организме человека состоит из следующих процессов:
- Расщепление в пищеварительном тракте поступающих с пищей поли- и дисахаридов до моносахаридов, дальнейшее всасывание моносахаридов из кишечника в кровь.
- Синтез и распад гликогена в тканях, прежде всего в печени.
- Гликолиз — распад глюкозы. Первоначально под этим термином обозначали только анаэробное брожение, которое завершается образованием молочной кислоты (лактата) или этанола и углекислого газа. В настоящее время понятие «гликолиз» используется более широко для описания распада глюкозы, проходящего через образование глюкозо-6-фосфата, фруктозо-1,6-дифосфата и пирувата как в отсутствие, так и в присутствии кислорода. В последнем случае употребляется термин «аэробный гликолиз», в отличие от «анаэробного гликолиза», завершающегося образованием молочной кислоты или лактата.
- Анаэробный путь прямого окисления глюкозы или, как его называют, пентозофосфатный путь.
- Взаимопревращение гексоз.
- Анаэробный метаболизм пирувата. Этот процесс выходит за рамки углеводного обмена, однако может рассматриваться как завершающая его стадия: окисление продукта гликолиза — пирувата.
- Глюконеогенез — образование углеводов из неуглеводных продуктов.
Фосфоенолпировиноградная кислота — эфир фосфорной кислоты и енольной формы пировиноградной кислоты.
1,3-Бисфосфоглицериновая кислота — смешанный ангидрид фосфорной кислоты и карбоксильной группы. Промежуточный продукт в реакциях гликолиза, глюконеогенеза, а также цикла Кальвина — наиболее распространённого в биосфере пути фиксации углерода при фотосинтезе и хемосинтезе.
3-Фосфоглицериновая кислота (3-ФГК, 3-фосфоглицерат) — органическое соединение, сложный эфир глицериновой кислоты и ортофосфорной кислоты, важный промежуточный метаболит гликолиза и цикла Кальвина. В цикле Кальвина 3-фосфоглицерат образуется в результате спонтанного распада нестабильного шестиуглеродного соединения, образованного в результате фиксации CO2 на молекуле рибулозо-1,5-бисфосфата. Таким образом, на каждую молекулу фиксированного CO2 образуется две молекулы 3-фосфоглицерата.
Рибулозо-1,5-бисфосфат (рибулозо-1,5-дифосфат, РуБФ) — двойной сложный эфир пятичленного сахара рибулозы и фосфорной кислоты. В растворе присутствует в форме бесцветного аниона. Эта молекула выполняет важную биологическую функцию, она — главный акцептор CO2 в реакции фиксации углекислого газа. Приставка бис в названии подчёркивает, что две фосфатные группы находятся у разных атомов углерода, а вот приставка ди может трактоваться как то, что два фосфата последовательно соединены друг с другом.
С3-фотосинтез — один из трёх основных метаболических путей для фиксации углерода наряду с С4- и CAM-фотосинтезом. В ходе этого процесса углекислый газ и рибулозобисфосфат (пятиуглеродный сахар) превращаются в две молекулы 3-фосфоглицерата (трёхуглеродного соединения) посредством следующей реакции:
- СО2 + H2O + РуБФ → (2) 3-фосфоглицерат
Фосфоглицераткиназа, или ФГК, — фермент, катализирующий обратимую реакцию переноса фосфатной группы от 1,3-бисфосфоглицериновой кислоты к АДФ, в результате которой образуются 3-фосфоглицерат и АТФ. ФГК является важным ферментом в процессе гликолиза. В рамках глюконеогенеза ФГК катализирует обратную реакцию, в результате чего образуются АДФ и 1,3-бисфосфоглицерат.
Фосфоглицератмутаза, также фосфоглицеромутаза — фермент, катализирующий реакцию внутреннего переноса фосфатной группы с C-3 на C-2, превращающей 3-фосфоглицерат в 2-фосфоглицерат.