
Рибонуклеи́новая кислота́ (РНК) — одна из трёх основных макромолекул, которые содержатся в клетках всех живых организмов и играют важную роль в кодировании, прочтении, регуляции и экспрессии генов.

РНК-интерференция — процесс подавления экспрессии гена на стадии транскрипции, трансляции, деаденилирования или деградации мРНК при помощи малых молекул РНК.

Ма́тричная рибонуклеи́новая кислота́ — РНК, содержащая информацию о первичной структуре белков. мРНК синтезируется на основе ДНК в ходе транскрипции, после чего, в свою очередь, используется в ходе трансляции как матрица для синтеза белков. Тем самым мРНК играет важную роль в «проявлении» (экспрессии) генов.
Сплайсосо́ма — ядерная структура, состоящая из молекул РНК и белков и осуществляющая удаление некодирующих последовательностей (интронов) из предшественников мРНК. Этот процесс называется сплайсингом . Сплайсосому составляют пять малых ядерных РНК (мяРНК), и каждая из них связана по меньшей мере с семью белковыми факторами, образуя малые ядерные рибонуклеопротеины (мяРНП). Содержащиеся в сплайсосоме мяРНП называются U1, U2, U4, U5 и U6.

Ми́кроРНК — малые некодирующие молекулы РНК длиной 18—25 нуклеотидов, обнаруженные у растений, животных и некоторых вирусов, принимающие участие в транскрипционной и посттранскрипционной регуляции экспрессии генов путём РНК-интерференции. Помимо внутриклеточной обнаружена внеклеточная (циркулирующая) микроРНК.

Xist — ген, кодирующий РНК и локализованный на Х-хромосоме плацентарных млекопитающих, является ключевым эффектором в инактивации Х-хромосомы. Он входит в состав комплекса Xic, наряду с двумя другими РНК-кодирующими генами и двумя белоккодирующими генами. Продукт гена Xist — Xist-РНК — представляет собой крупный транскрипт, который экспрессируется на неактивной хромосоме и не экспрессируется на активной. Процессинг этого транскрипта напоминает процессинг мРНК и тоже включает этапы сплайсинга и полиаденилирования, однако он остаётся в ядре и не транслируется. Было высказано предположение, что ген Xist по крайней мере частично образовался как часть белоккодирующего гена, который впоследствии стал псевдогеном. Инактивированная Х-хромосома покрыта Xist-РНК, который необходим для процесса инактивации. Х-хромосома, лишённая гена Xist, не будет инактивирована, однако дупликация этого гена на другой хромосоме вызывает инактивацию и первой хромосомы тоже.

Dicer — рибонуклеаза из семейства РНКазы III, которая разрезает двуцепочечные молекулы РНК и пре-микроРНК (pre-miRNA) с получением коротких двуцепочечных РНК-фрагментов, называемых малыми интерферирующими РНК (siRNA) и микроРНК (miRNA) соответственно. Данные фрагменты имеют длину приблизительно 20-25 нуклеотидов, обычно с оверхенгом в 2-3 нуклеотида на 3'-конце.
RNA-induced silencing complex или RISC — мультибелковый комплекс, в состав которого входит один из белков семейства Argonaute и малые интерферирующие РНК, предварительно подвергшиеся процессингу эндонуклеазой Dicer. Dicer расщепляет предшественник siRNA, представляющий собой двуцепочечную молекулу РНК (dsRNA) на одноцепочечные фрагменты. В состав RISC всегда включатся только один из них; предпочтение отдается тому фрагменту, 5'-конец которого конъюгирован менее прочно. Затем RISC образует комплекс с РНК-мишенью, что приводит либо к репрессии её трансляции в случае неполной комплементарности, либо к расщеплению её последовательности приблизительно в середине участка спаривания в случае полной или почти полной комплементарности. Эндонуклеазная активность внутри комплекса RISC опосредована РНКаза-H-подобным доменом (piwi) в белке Argonaute.
piРНК — наиболее крупный класс малых некодирующих РНК, экспрессируемых в клетках животных; они обнаружены в комплексах с белками семейства Piwi, за что и получили своё название. piРНК обычно длиннее микроРНК и малых интерферирующих РНК и имеют длину 26—32 нуклеотида, кроме того, в отличие от микроРНК, они не так консервативны. Белки Piwi относятся к большой группе белков Argonaute и экспрессируются почти исключительно в клетках зародышевой линии; они необходимы для поддержания стволовых клеток зародышевой линии, сперматогенеза и репрессии мобильных элементов. Комплексы Piwi с piРНК не только задействованы в сайленсинге ретротранспозонов и других генетических элементов на пост-трансляционном уровне, но имеют и некоторые другие, в значительной мере ещё неописанные эффекты, например, эпигенетические.
Белки группы polycomb — это семейство белков, которые способны ремоделировать хроматин. Эти белки-регуляторы были впервые описаны у дрозофил, где они подавляют гомеозисные гены, контролирующие индивидуальные отличия сегментов развивающегося эмбриона.

Альтернати́вный спла́йсинг — вариант сплайсинга матричных РНК (мРНК), при котором в ходе экспрессии гена на основе одного и того же первичного транскрипта (пре-мРНК) происходит образование нескольких зрелых мРНК. Структурные и функциональные различия образовавшихся транскриптов могут быть вызваны как выборочным включением в зрелую мРНК экзонов первичного транскрипта, так и сохранением в ней частей интронов. Наиболее распространённая разновидность альтернативного сплайсинга предусматривает пропуск экзона: отдельные экзоны транскрипта при определённых условиях могут быть как включены в зрелую мРНК, так и пропущены.
Подавление экспрессии генов — это общий термин, описывающий эпигенетический процесс регуляции генов. При этом последовательность нуклеотидов не изменяется, а лишь прекращается экспрессия соответствующего гена. Для выключения генов в лабораторных условиях применяют метод нокдауна генов.
Полиаденили́рование — это процесс присоединения большого количества остатков аденозинмонофосфата к 3'-концу первичной мРНК (пре-мРНК). Иными словами, поли(А)-хвост — это фрагмент молекулы мРНК, азотистые основания которого представлены только аденином. У эукариот полиаденилирование является частью процессинга мРНК — процесса созревания первичного транскрипта в зрелую мРНК, готовую для трансляции. Процессинг, в свою очередь, является одним из этапов экспрессии генов.

Кэп, 5'-кэп, или кэп-структура — структура на 5'-конце матричных РНК (мРНК) и некоторых других РНК эукариот. Кэп состоит из одного или нескольких модифицированных нуклеотидов и характерен только для транскриптов, синтезируемых РНК-полимеразой II. Наличие кэпа — один из признаков, отличающих эукариотические мРНК от прокариотических, которые несут трифосфат на 5'-конце. Это и другие отличия обуславливают существенно более высокую стабильность, особый механизм инициации трансляции и другие особенности жизненного цикла эукариотической мРНК.
Нетрансли́руемые о́бласти — особые участки мРНК, не выступающие в качестве матрицы для синтеза белка и прилегающие с обеих сторон к транслируемой области. Таких области две: 5'-нетранслируемая область, или 5'-НТО и 3'-нетранслируемая область, или 3'-НТО, располагающиеся на 5'- и 3'-конце мРНК соответственно. Такое же название имеют участки ДНК, соответствующие 5'-НТО и 3'-НТО транскрипта.

Piwi — семейство генов, кодирующих регуляторные белки, участвующие в обеспечении неполной дифференцировки стволовых клеток, а также в поддержании постоянных значений темпов деления клеток зародышевой линии. Белки Piwi высококонсервативны и имеются как у растений, так и у животных.
Y-РНК — малые некодирующие РНК, входят в состав рибонуклеопротеинов, содержащих белки Ro60 и La, которые являются мишенью аутоантител у пациентов, страдающих системной красной волчанкой и синдромом Шегрена. Они также необходимы для репликации ДНК, так как взаимодействуют с хроматином и инициаторными белками.
Транс-активи́рующие ма́лые интерфери́рующие РНК, tasiРНК, TAS РНК — группа малых некодирующих РНК наземных растений, подавляющие экспрессию генов путём пост-трансляционного сайленсинга. TasiРНК транскрибируются в геноме в форме двуцепочечных полиаденилированных РНК, которые в дальнейшем процессируются и превращаются во фрагменты РНК длиной 21 нуклеотид. Эти фрагменты включаются в РНК-индуцируемый комплекс выключения гена (RISC). tasiРНК часто относят к малым интерферирующим РНК (siРНК) ввиду того, что обе этих группы малых РНК транскрибируются в форме двуцепочечных РНК и подвергаются схожему процессингу. Впрочем, tasiРНК отличаются от других siРНК тем, что они связывают свои последовательности-мишени с меньшей специфичностью. В этом их механизм более схож с механизмом действия микроРНК, так как они не нуждаются в полной комплементарности последовательностей со своей мишенью, чтобы направлять её распад.
Ассоциированные с повторами малые интерферирующие РНК, rasiРНК — группа малых некодирующих РНК, действующих по механизму РНК-интерференции. Часто многие rasiРНК относят к piРНК — классу малых некодирующих РНК, взаимодействующих с белками Piwi, Aub и Ago3 семейства Argonaute. В клетках зародышевой линии rasiРНК вовлечены в образование и поддержание гетерохроматина, контроль транскриптов, считывающихся с повторяющихся последовательностей, и сайленсинг транспозонов и ретротранспозонов.
RITS — форма РНК-интерференции, при которой короткие молекулы РНК, такие как малые интерферирующие РНК (siРНК), подавляют транскрипцию гена-мишени. Это часто сопровождается посттрансляционными модификациями хвостов гистонов, а именно метилированием лизина 9 гистона H3 (H3K9me), которое приводят к образованию гетерохроматина в локусе-мишени. Таким образом, RITS участвует в образовании гетерохроматина de novo. Белковый комплекс, который связывается с siРНК и взаимодействует с метилированным остатком лизина 9 гистона Н3, называется комплексом RITS. RITS был открыт у делящихся дрожжей Schizosaccharomyces pombe, и было показано, что он принимает участие в инициации образования гетерохроматина и его поддержании в локусе типа спаривания и в образовании центромеры. В состав комплекса RITS S. pombe входят три белка: белок группы argonaute, содержащий piwi-домен и похожий на РНКазу Н, белок Chp1, содержащий хромодомен, и белок Tas3, взаимодействующий с белками argonaute и с Chp1. Для образования гетерохроматина необходимы, как минимум, белок argonaute и РНК-зависимая РНК-полимераза. Утрата генов, кодирующих эти белки, у S. pombe, приводит к нарушениям в структуре гетерохроматина и функционировании центромер, так как комплекс RITS содержит siРНК, считанную с центромерных повторов. Аномальное функционирование центромер, в свою очередь, приводит к нарушению сегрегации хромосом в митозе, а именно — к появлению «отстающих» хромосом на стадии анафазы.