Станда́ртная моде́ль (СМ) — теоретическая конструкция в физике элементарных частиц, описывающая электромагнитное, слабое и сильное взаимодействие всех элементарных частиц. Современная формулировка была завершена в 2000-е годы после экспериментального подтверждения существования кварков. Открытие t-кварка (1995), b-кварка (1977) и тау-нейтрино (2000), подтвердило правильность СМ.
Кварк — бесструктурная элементарная частица и фундаментальная составляющая материи. Кварки объединяются в составные частицы, называемые адронами, наиболее стабильными из которых являются протоны и нейтроны, компоненты атомных ядер. Всё обычно наблюдаемое вещество состоит из верхних кварков, нижних кварков и электронов. Из-за явления, известного как удержание цвета, кварки никогда не встречаются изолированно; их можно найти только внутри адронов, которые включают барионы и мезоны, или в кварк-глюонной плазме. По этой причине много информации о кварках было получено из наблюдений за адронами.
Лепто́ны — фундаментальные частицы с полуцелым спином, не участвующие в сильном взаимодействии. Наряду с кварками и калибровочными бозонами лептоны составляют неотъемлемую часть Стандартной модели.
Хира́льность (киральность) — свойство физики элементарных частиц, состоящее в различии правого и левого, и указывающее на то, что Вселенная является несимметричной относительно замен правого и левого.
Зако́н сохране́ния электри́ческого заря́да — закон физики, утверждающий, что алгебраическая сумма зарядов электрически замкнутой системы сохраняется:
Мезо́н — адрон, имеющий нулевое значение барионного числа. В Стандартной модели мезоны — составные элементарные частицы, состоящие из равного числа кварков и антикварков. К мезонам относятся пионы, каоны (K-мезоны) и другие, более тяжёлые, мезоны.
Барио́ны — семейство элементарных частиц: сильно взаимодействующие фермионы, состоящие из трёх кварков. В 2015 году было также доказано существование аналогичных частиц из 5 кварков, названных пентакварками.
Сла́бое взаимоде́йствие — фундаментальное взаимодействие, ответственное, в частности, за процессы бета-распада атомных ядер и слабые распады элементарных частиц, а также нарушения законов сохранения пространственной и комбинированной чётности в них. Это взаимодействие называется слабым, поскольку два других взаимодействия, значимые для ядерной физики и физики высоких энергий, характеризуются значительно большей интенсивностью. Однако оно значительно сильнее четвёртого из фундаментальных взаимодействий, гравитационного.
Калибровочные бозоны — бозоны, которые действуют как переносчики фундаментальных взаимодействий. Точнее, элементарные частицы, взаимодействия которых описываются калибровочной теорией, оказывают действие друг на друга при помощи обмена калибровочными бозонами, обычно как виртуальными частицами.
Барио́нное число́ — сохраняющееся аддитивное квантовое число в физике элементарных частиц, определяющее количество барионов в системе. Оно определяется как:
u-кварк или верхний кварк, принадлежит к первому поколению фундаментальных фермионов, имеет заряд +(2/3)e. Как и все кварки, участвует во всех четырёх типах взаимодействий: сильном, слабом, электромагнитном, гравитационном. Вместе с d-кварками u-кварки образуют нуклоны, которые являются основными составляющими атомного ядра. Протон состоит из двух u-кварков и одного d-кварка, а нейтрон — из одного u-кварка и двух d-кварков. Существуют и другие адроны, содержащие u-кварки. Античастицей u-кварка является u-антикварк, который отличается от u-кварка знаком некоторых характеристик взаимодействий. На современном уровне знаний u-кварк является бесструктурной частицей, то есть фундаментальной, как и другие кварки и лептоны.
Это список барионов в физике элементарных частиц.
Као́н — мезон, содержащий один странный антикварк и один u- или d-кварк. Каоны — самые лёгкие из всех странных адронов.
d-кварк или нижний кварк, принадлежит к первому поколению фундаментальных фермионов, имеет заряд −(1/3)e. Вместе с u-кварками d-кварки образуют нуклоны, которые являются основными составляющими атомного ядра. Протон состоит из двух u-кварков и одного d-кварка, а нейтрон — из одного u-кварка и двух d-кварков.
Теории Великого объединения, ТВО (англ. Grand Unified Theory, GUT) — в физике элементарных частиц группа теоретических моделей, описывающих единым образом сильное, слабое и электромагнитное взаимодействия. Предполагается, что при чрезвычайно высоких энергиях (выше 1014 ГэВ) эти взаимодействия объединяются. Хотя это единое взаимодействие не наблюдалось непосредственно, многие модели ТВО предсказывают его существование. Если объединение этих трех взаимодействий возможно, это поднимает вопрос о том, что в очень ранней Вселенной была великая объединительная эпоха, в которой эти три фундаментальных взаимодействия еще не были разделены друг от друга.
Субатомная частица — частица, намного меньшая, чем атом. Рассматриваются два типа субатомных частиц: фундаментальные частицы, которые, согласно современным теориям, не состоят из других частиц; и составные частицы. Физика частиц и ядерная физика изучают эти частицы и как они взаимодействуют. Идея частицы подверглась серьёзному переосмыслению, когда эксперименты показали, что свет может вести себя как поток частиц, а также проявлять свойства волны. Это привело к появлению концепции корпускулярно-волнового дуализма, отражающей, что «частицы» в квантовом масштабе ведут себя как частицы и волны. Другая концепция, принцип неопределённости, утверждает, что некоторые их свойства, такие, как их одновременное положение и импульс, будучи взятыми вместе, не могут быть точно измерены. Позднее было показано, что дуальность волны и частицы применимы не только к фотонам, но и к более массивным частицам.
Спонта́нное наруше́ние симме́три́и — способ нарушения симметрии физической системы, при котором исходное состояние и уравнения движения системы инвариантны относительно некоторых преобразований симметрии, но в процессе эволюции система переходит в состояние, для которого инвариантность относительно некоторых преобразований начальной симметрии нарушается. Спонтанное нарушение симметрии всегда связано с вырождением состояния с минимальной энергией, называемого вакуумом. Множество всех вакуумов имеет начальную симметрию, однако каждый вакуум в отдельности — нет. Например, шарик в жёлобе с двумя ямами скатывается из неустойчивого симметричного состояния в устойчивое состояние с минимальной энергией либо влево, либо вправо, разрушая при этом симметрию относительно изменения левого на правое.
R-чётность — разновидность чётности в физике элементарных частиц, которая вводится в теории суперсимметрии.
В теориях Великого объединения физики элементарных частиц и, в частности, в теориях масс нейтрино и нейтринных осцилляций, механизм seesaw является общей моделью, используемой для понимания относительных размеров наблюдаемых масс нейтрино, порядка эВ, по сравнению с кварками и заряженными лептонами, которые в миллионы раз тяжелее.
Симметрии в квантовой механике — преобразования пространства-времени и частиц, которые оставляют неизменными уравнения квантовой механики. Рассматриваются во многих разделах квантовой механики, которые включают релятивистскую квантовую механику, квантовую теорию поля, стандартную модель и физику конденсированного состояния. В целом, симметрия в физике, законы инвариантности и сохранения являются основополагающими ограничениями для формулирования физических теорий и моделей. На практике это мощные методы решения задач и прогнозирования того, что может случиться. Хотя законы сохранения не всегда дают конечное решение проблемы, но они формируют правильные ограничения и наметки к решению множества задач.