Вируле́нтность — степень способности данного инфекционного агента вызывать заболевание или гибель организма. Вирулентность является мерой патогенности.
Бактериофа́ги, или фа́ги (от др.-греч. φᾰ́γω — «пожираю»), — вирусы, заражающие бактериальные клетки. Ранее бактериофагами называли и вирусы архей, однако в настоящее время этот термин принято относить исключительно к бактериальным вирусам. Бактериофаги, как и любые иные вирусы, размножаются внутри клетки хозяина. Высвобождение потомства большинства бактериофагов происходит путём лизиса инфицированной бактериальной клетки, однако при размножении бактериофагов некоторых групп, например, нитчатых фагов, выход вирусных частиц происходит без разрушения клетки, которая сохраняет свою жизнеспособность. Вирусная частица или вирион бактериофага состоит из оболочки, как правило белковой, и генетического материала — одноцепочечной или двуцепочечной нуклеиновой кислоты (ДНК или, реже, РНК). Общая численность бактериофагов в большинстве природных местообитаний примерно равна численности бактерий или превышает ее в 2—10 раз, при этом общее количество фаговых частиц в биосфере Земли составляет 1030—1032 частиц. Бактериофаги активно участвуют в круговороте химических веществ и энергии, оказывают заметное влияние на состав, динамику и активность микробных сообществ, влияют на эволюцию микробов, на их взаимодействия между собой и с многоклеточными организмами и даже участвуют в контроле экспрессии собственных генов микроорганизмов. У бактерий существует также большое число генетических элементов и кодируемых ими молекулярных структур, имеющих общее происхождение с бактериофагами, «приспособленных» микробами для тех или иных собственных нужд: дефектные профаги, бактериоцины типов R и F, AFP-профаги (от англ. antifeeding prophage — профаги, препятствующие питанию), системы секреции VI типа (T6SS), сократимые системы, ассоциированные с метаморфозом (MAC), агенты переноса генов (GTA — gene tranfer agents) и другие. Бактериофаги, а также антивирусные (противофаговые) системы бактерий послужили источником большей части инструментария современной генетической инженерии и ряда других технологий.
Плазми́ды — небольшие молекулы ДНК, физически обособленные от хромосом и способные к автономной репликации. Главным образом плазмиды встречаются у бактерий, а также у некоторых архей и эукариот. Чаще всего плазмиды представляют собой двухцепочечные кольцевые молекулы. Несмотря на способность к размножению, плазмиды, как и вирусы, не рассматриваются в качестве живых организмов.
Цитозо́ль — жидкое содержимое клетки. Большую часть цитозоля занимает внутриклеточная жидкость. Цитозоль разбивается на компартменты при помощи разнообразных мембран. У эукариот цитозоль располагается под плазматической мембраной и является частью цитоплазмы, в которую, помимо цитозоля, входят митохондрии, пластиды и другие органеллы, но не содержащаяся в них жидкость и внутренние структуры. Таким образом, цитозоль представляет собой жидкий матрикс, окружающий органеллы. У прокариот большая часть химических реакций метаболизма происходит в цитозоле, и лишь небольшая их часть происходит в мембранах и периплазматическом пространстве. У эукариот, хотя многие реакции протекают в органеллах, некоторые реакции, например, гликолиз или синтез жирных кислот, происходят в цитозоле.
Лизосо́ма — окружённая мембраной клеточная органелла, в полости которой поддерживается кислая среда и находится множество растворимых гидролитических ферментов. Лизосома отвечает за внутриклеточное переваривание макромолекул, в том числе при аутофагии; лизосома способна к секреции своего содержимого во время экзоцитоза; также лизосома участвует в некоторых внутриклеточных сигнальных путях, связанных с метаболизмом и ростом клетки.
Вакуо́ль — одномембранный органоид, содержащийся в некоторых эукариотических клетках и выполняющий различные функции. Вакуоли развиваются из мембранных пузырьков — провакуолей. Провакуоли являются производными эндоплазматического ретикулума и комплекса Гольджи, они сливаются и образуют вакуоли. Вакуоли и их содержимое рассматриваются как обособленный от цитоплазмы компартмент. Различают пищеварительные и сократительные (пульсирующие) вакуоли, регулирующие осмотическое давление и служащие для выведения из организма продуктов распада. Вакуоли особенно хорошо заметны в клетках растений: во многих зрелых клетках растений они составляют более половины объёма клетки, при этом они могут сливаться в одну гигантскую вакуоль. Одна из важных функций растительных вакуолей — накопление ионов и поддержание тургора. Вакуоль — это место запаса воды.
L-формы — бактерии, частично или полностью лишённые клеточной стенки, но сохранившие способность к развитию. Впервые обнаружены в 1894 г. Н. Ф. Гамалеем. Буква L — первая буква названия Листеровского института в Лондоне, где впервые Эмми Кляйнебергер-Нобель обратила внимание на развитие морфологически весьма необычных клеток в культуре бактерий Streptobacillus moniliformis, выделенной из жидкости уха крысы. Позже были описаны L-формы у самых разных видов бактерий. Было показано, что L-формы возникают спонтанно или индуцировано — под воздействием агентов, блокирующих синтез клеточной стенки: антибиотиков, ферментов ультрафиолетовых и рентгеновских лучей, аминокислоты глицина.
У термина компартментализация существует другое значение, см. Раздельное мышление.
Презентация антиге́на — процесс предъявления T-лимфоциту фрагмента антигена с целью запуска T-клеточного ответа. Поскольку T-клетки не распознают нативные антигены, то нативные антигены предварительно фрагментируются антигенпрезентирующей клеткой, и фрагменты выставляются на её поверхности в связанном с главным комплексом гистосовместимости (MHC) виде, чтобы они могли быть распознаны T-клеточными рецепторами. В случае вирусной или бактериальной инфекции антигенпрезентирующая клетка выставляет на своей поверхности эндогенные или экзогенные пептидные фрагменты, полученные от исходного антигена, в виде комплекса с MHC. Существуют два класса молекул MHC, которые различаются происхождением фрагментов антигена, которые с ними связываются: молекулы MHC I класса (MHC-I) связывают пептидные фрагменты, происходящие из цитозоля клетки, а молекулы MHC II класса (MHC-II) связывают фрагменты экзогенного происхождения, которые появились в результате эндоцитоза исходного антигена и его последующего расщепления. Каждая T-клетка способна распознавать от нескольких десятков до нескольких сотен фрагментов одного и того же антигена, хотя на поверхности антигенпрезентирующей клетки могут быть экспонированы тысячи других пептидных фрагментов, поскольку одна и та же молекула MHC способна связывать самые разнообразные пептиды.
Микроспори́дии — клада родственных грибам простейших, все представители которой являются облигатными внутриклеточными паразитами эукариотических организмов. Описано около 1300 видов в 160 родах, что является малой частью реального разнообразия данной группы, так как огромное количество потенциальных хозяев не было исследовано на предмет заражения микроспоридиями. Данные патогены широко распространены среди животных практически всех систематических групп, от простейших до высших позвоночных, включая человека. Наиболее многочисленны и разнообразны микроспоридии ракообразных и насекомых.
Биоплёнка — множество (конгломерат) микроорганизмов, расположенных на какой-либо поверхности, клетки которых прикреплены друг к другу. Обычно клетки погружены в выделяемое ими внеклеточное полимерное вещество — слизь. Развитие биоплёнки, а иногда и саму биоплёнку также называют биообрастанием. Термин «биоплёнка» определяется по-разному, но в целом можно сказать, что биоплёнка — обладающее пространственной и метаболической структурой сообщество (колония) микроорганизмов, расположенных на поверхности раздела сред и погружённых во внеклеточный полимерный матрикс. Обычно биоплёнки образуются в контакте с жидкостями при наличии необходимых для роста веществ. Поверхность, к которой прикреплена биоплёнка, может быть как неживой (камни), так и поверхностью живого организма. Считается, что 95-99% всех микроорганизмов в естественной среде существует в виде биоплёнки.
Кле́тка — структурно-функциональная элементарная единица строения и жизнедеятельности всех организмов, обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию. Все живые организмы либо состоят из множества клеток, либо являются одноклеточными организмами. Раздел биологии, занимающийся изучением строения и жизнедеятельности клеток, получил название цитологии. Также принято говорить о биологии клетки, или клеточной биологии.
Эндоспо́ры — покоящиеся формы бактерий, которые образуются в результате скоординированной дифференцировки двух дочерних клеток, образовавшихся при удвоении генома исходной бактерии, причём одна из них проникает внутрь цитоплазмы другой дочерней клетки, которая становится внешней. Далее внешняя дочерняя клетка погибает программируемой гибелью, а внутренняя клетка (преспора) становится собственно эндоспорой и входит в состояние максимального физиологического покоя, при котором все физиологические процессы внутри споры останавливаются (гиперанабиоза). Она становится чрезвычайно резистентной к неблагоприятным условиям окружающей среды и может сохранять жизнеспособность в течение длительного времени.
Пиропто́з — вид программируемой некротической гибели клетки, при котором в результате активации каспазы 1 происходит нарушение целостности плазматической мембраны и быстрое высвобождение наружу содержимого клетки. Характерной чертой пироптоза является зависимое от каспазы 1 активное выделение клеткой интерлейкинов IL‑1β и IL‑18, что приводит к воспалению. Пироптоз служит защитным механизмом врождённого иммунитета, ограничивающим размножение внутриклеточных патогенов, однако этот тип гибели клеток не ограничивается бактериальными инфекциями.
Эндомембра́нная систе́ма — система разнообразных мембран, располагающихся в цитоплазме эукариотической клетки. Эти мембраны делят клетку на функциональные компартменты, или органеллы. К компонентам эндомембранной системы относят ядерную оболочку, эндоплазматический ретикулум, аппарат Гольджи, лизосомы, везикулы, вакуоли и клеточную мембрану. Мембраны эндомембранной системы составляют единую функциональную единицу и либо непосредственно соединяются друг с другом, либо обмениваются материалом посредством везикулярного транспорта. В эндомембранную систему не входят мембраны митохондрий, пероксисом и хлоропластов, хотя, возможно, она произошла от митохондриальных мембран.
Энто́з — вид программируемой клеточной гибели, при котором одна эпителиальная клетка поглощается другой эпителиальной клеткой и впоследствии умирает в вакуоли или лизосоме поглотившей клетки. Энтоз часто наблюдается в опухолях, потому что он запускается при утрате контактов клетки с внеклеточным матриксом, что наиболее часто наблюдается у раковых клеток. Показано также, что энтоз играет важную роль в эмбриональном развитии млекопитающих.
Chlamydiales (лат.) — порядок бактерий из класса Chlamydiia. Все представители порядка — внутриклеточные паразиты клеток эукариотов. Большинство описанных разновидностей заражают млекопитающих и птиц, но некоторые были найдены в других хозяевах, например амёбах. Сначала они рассматривались как единый род Chlamydia, но сейчас описаны несколько различных родов. Они связаны с другими бактериальными группами, особенно Thermomicrobia, но тем не менее формируют свой собственный тип.
Фазмиды — молекулярные векторы, являющиеся искусственными гибридами между фагом и плазмидой. Фазмиды после встройки чужеродной ДНК могут в одних условиях развиваться как фаги, а в других как плазмиды.
Программи́руемая кле́точная ги́бель, или программи́руемая кле́точная смерть, или запрограмми́рованная ги́бель кле́ток — гибель клетки, которая происходит за счёт запрограммированных внутриклеточных процессов. Ко второму десятилетию XXI века насчитывается более десяти известных видов программируемой клеточной гибели. С 2005 года классификацией видов клеточной гибели занимается Комитет по номенклатуре видов клеточной гибели. Программируемая клеточная гибель описана для всех крупных групп эукариот: животных, растений, грибов, слизевиков и даже одноклеточных организмов. ПКГ выполняет множество функций как на уровне клетки, так и на уровне целого организма: у животных она играет важнейшую роль в развитии, с её помощью элиминируются повреждённые клетки, у растений она задействована в образовании тканей, состоящих из мёртвых клеток, таких как ксилема. Программируемая клеточная гибель известна не только у эукариот: несколько видов программируемой гибели было описано у бактерий. Все виды программируемой клеточной гибели можно подразделить на внешние, которые запускаются сигналами извне клетки, и внутренние, вызванные нарушениями в функционировании клеток.
Бактериа́льная кле́тка обычно устроена наиболее просто по сравнению с клетками других живых организмов. Бактериальные клетки часто окружает капсула, которая служит защитой от внешней среды. Для многих свободноживущих бактерий характерно наличие жгутиков для передвижения, а также ворсинок.