ERCC6

Перейти к навигацииПерейти к поиску
Ексцезионный репаратор кросс-комплементарной группы 6
Доступные структуры
PDBПоиск ортологов: PDBe, RCSB
Идентификаторы
СимволERCC6 ; ARMD5; CKN2; COFS; COFS1; CSB; RAD26; UVSS1
Внешние IDOMIM: 609413 MGI1100494 HomoloGene133552 GeneCards: Ген ERCC6
Ортологи
ВидЧеловекМышь
Entrez2074319955
EnsemblENSG00000225830ENSMUSG00000054051
UniProtQ03468A3KMN2
RefSeq (мРНК)NM_000124NM_001081221
RefSeq (белок)NP_000115NP_001074690
Локус (UCSC)Chr 10:
50.72 – 50.75 Mb
Chr 14:
32.51 – 32.58 Mb
Поиск в PubMedИскатьИскать

Белок эксцизионной репарации ДНК ERCC-6 (он же белок CS-B ) — белок, кодируемый у человека геном ERCC6 [1][2][3]. Ген ERCC6 расположен на длинном плече хромосомы 10 в позиции 11.23[4].

Наличие одной или более копий мутантного ERCC6 вызывает синдром Коккейна типа II.

Функция

ДНК может быть повреждена под воздействием ультрафиолетового излучения, токсинов, радиоактивных веществ и реактивных биохимических элементов, таких как свободные радикалы. Белок ERCC6 участвует в репарации генома, когда конкретные гены, подвергающиеся транскрипции (дублированнию активных генов ) не функционируют; как таковой, CSB служит транскрипционной связью эксцезионной репарации белка, являясь одним из основных ферментов в активной репарации генов[4].

Структура и механизм

CSB, как было установлено, обладают свойствами АТФазы; есть противоречивые публикации о влиянии концентрации АТФ на активность CSB[5]. Самые последние данные показывают, что АДФ/AMP аллостерически регулируют CSB[3]. Таким образом, было предположено, что CSB может способствовать образованию белкового комплекса при репарации сайтов при определённом соотношении зарядов АТФ и АДФ.

Консервативность мотивов геликазы у CSB эукариот является очевидным; все семь основных доменов белка являются консервативными среди многочисленных РНК и ДНК геликаз. Был выполнен подробный структурный анализ CSB; мотивы I, Ia, II, III в совокупности называются доменом 1, в то время как мотивы IV, V, VI составляют домен 2. Эти домены обернуты вокруг бороздки между доменами, участвующими в связывании ATP и гидролизе. Мотивы III и IV находятся в непосредственной близости от активного сайта; Следовательно, остатки в этих регионах стабилизируют связывание АТФ/АДФ с помощью водородных связей[6]. Было предположено, что домен 2 влияет на связывания ДНК после индуцированных конформационных изменений, обусловленных гидролизом АТФ. Специфические остатки, привлекаемые связывающим геном, ещё не определены[7].

Эволюционные корни CSB привели некоторых к утверждению, что он обладает геликазной активностью[8]. Очевидность геликазных свойств CSB весьма спорна; тем не менее, было обнаружено, что белок является участником внутриклеточного транспорта, традиционной роли геликаз. Сложные взаимодействия между белками репарации ДНК предполагают, что CSB у эукариот поддерживает некоторые, но не все функции своих прокариотических прекурсоров[9].

Взаимодействия

CSB, как было выявлено, взаимодействует с P53[10][11].

CSB, как было выявлено, действуют как фактор ремоделирования хроматина для РНК-полимеразы II. Когда РНК-полимераза II застряла по ошибке в геноме, CSB ремоделирует двойную спираль ДНК, чтобы разрешить доступ ферментов репарации к повреждению[12].

CSB участвует в базовой эксцизионной репарации[англ.] (BER) пути. Это демонстрирует взаимодействие с AP эндонуклеазой[англ.] человека, хотя взаимодействия между рекомбинантной CSB и дезоксирибонуклеазой IV , а также фрагментами N-конца AP эндонуклеазы человека не обнаружены in vitro. В частности, CSB стимулирует разрез AP сайта активности AP эндонуклеазы, независимо от АТФ[13].

В дополнение к BER пути, CSB сильно интегрирована в пути эксцизионной репарации нуклеотидов (NER). В то время как BER использует гликозилазы[англ.] для опознания и исправления небольщих поражений, NER особенно универсальна в репарации поврежденний ДНК УФ-излучением с помощью удаления окисленных оснований. Роль CSB в NEK лучше проявляется в результате взаимодействия с рецепторами Т-клеток, в котором белковое сотрудничество играет ключевую роль в эффективном связывании антигена[14].

Нейрогенез и нейронная дифференциация

Нокаут ERCC6 в нейронных человеческих прогениторных клетках был показан, чтобы уменьшить как нейрогенез, так и нервную дифференциацию. Оба механизма являются ключевыми в развитии мозга, объясняя характерные когнитивные дефициты синдрома Коккейна — такие, как чахлое развития нервной системы — иначе ничто не объясняет связи с такими симптомами, как светочувствительность и потеря слуха[15].

Синдром Коккейна

У человека, синдром Коккейна (CS) является редкой аутосомно-рецессивной лейкодистрофией[англ.] (связанной с деградацией белого вещества). Мутации в ERCC6, которые приводят к CS, распределяются в обоих размерах белка, а также специфичных аминокислотных остатках, используемых в биосинтезе. У пациентов, представляющих CS типа II, часто сокращенные и/или неправильно упакованные CSB, которые нарушают экспрессию генов и транскрипцию. Характерный биологический эффект неисправной ERCC6 — гибель нервных клеток, в результате чего преждевременное старение и увеличение дефектов[4].

Степень, в которой малофункциональный CSB препятствует окислительной репарации, существенно влияет на неврологическое функционирование пациента. Две субформы расстройства (последняя из которых соответствует дефектам ERCC6) — CS-A и CS-B; обе вызывают проблемы в окислительной репарации, хотя пациенты CS-B чаще проявляют проблемы нервной системы, вытекающие из этого повреждения пути. Большинство больных CS типа II проявляют светочувствительность в соответствии с сильными окислительными свойствами ультрафиолетовых лучей[16][17].

Последствия при раке

Однонуклеотидные полиморфизмы в гене ERCC6 сопоставимы со значительно повышенным риском определенных форм рака. Специфичные мутации в позиции 1097 (M1097V), а также полиморфизмы в аминокислотном остатке 1413 были связаны с повышенным риском рака мочевого пузыря для испытуемых на Тайване; кроме того, M1097V играет ключевую роль в патогенезе[18]. Полиморфизм Rs1917799 был связан с повышенным риском рака желудка для китайских испытуемых[19] и мутации в кодоне 399 были сопоставлены с наступлением рака ротовой полости среди тайваньских пациентов[20]. Ещё одно исследование показало разнообразный набор мутаций в гене ERCC6 среди китайских пациентов с раком легких по сравнению с населением в целом (с точки зрения статистической значимости), но не смогли определить конкретные полиморфизмы, коррелирующие с болезнью пациента[21].

Нарушения репарации ДНК причинно причастно к развитию опухоли из-за неспособности неполнофункциональных белков исправить гены, ответственные за апоптоз и рост клеток. Тем не менее, подавляющее большинство исследований, касающихся влияния нокаута ERCC6 или мутаций при раке, основаны на статистических корреляциях имеющихся данных о пациенте, в отличие от механистического анализа in vivo начала ракового процесса. Следовательно, не найдя на основе белок-белок, белок-субстрат и/или субстрат-субстрат соответствующих взаимодействий, невозможно полагать мутации в ERCC6 причиной рака на индивидуальной основе.

Примечания

  1. Troelstra C., van Gool A., de Wit J., Vermeulen W., Bootsma D., Hoeijmakers J.H. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes (англ.) // Cell : journal. — Cell Press, 1992. — December (vol. 71, no. 6). — P. 939—953. — doi:10.1016/0092-8674(92)90390-X. — PMID 1339317.
  2. Muftuoglu M., de Souza-Pinto N.C., Dogan A., Aamann M., Stevnsner T., Rybanska I., Kirkali G., Dizdaroglu M., Bohr V.A. Cockayne syndrome group B protein stimulates repair of formamidopyrimidines by NEIL1 DNA glycosylase (англ.) // The Journal of Biological Chemistry : journal. — 2009. — April (vol. 284, no. 14). — P. 9270—9279. — doi:10.1074/jbc.M807006200. — PMID 19179336. — PMC 2666579.
  3. 1 2 Entrez Gene: ERCC6 excision repair cross-complementing rodent repair deficiency, complementation group 6. Архивировано 22 сентября 2009 года.
  4. 1 2 3 NIH. «ERCC6 Gene.» Genetics Home Reference. National Institutes of Health, 16 Feb. 2015. Web. 22 Feb. 2015. <http://ghr.nlm.nih.gov/gene/ERCC6 Архивная копия от 24 апреля 2015 на Wayback Machine>.
  5. Selby C.P., Sancar A. Human transcription-repair coupling factor CSB/CSB is a DNA-stimulated ATPase but is not a helicase and does not disrupt the ternary transcription complex of stalled RNA polymerase II (англ.) // J Biol Chem : journal. — 1997. — 17 January (vol. 272, no. 3). — P. 1885—1890. — doi:10.1074/jbc.272.3.1885. — PMID 8999876.
  6. Durr H, Korner C, Muller M, Hickmann V, Hopfner KP. 2005. X-ray structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA. Cell 121:363-373.
  7. Lewis R, Durr H, Hopfner KP, Michaelis J. 2008. Conformational changes of a Swi2/ Snf2 ATPase during its mechano-chemical cycle. Nucleic Acids Res 36:1881-1890.
  8. Troelstra C, van Gool A, de Wit J, Vermeulen W, Bootsma D, Hoeijmakers JH (January 1993). «CSB, a member of a subfamily of putative helicases, is involved in Cockayne’s syndrome and preferential repair of active genes». Cell 71 (6): 939-53.
  9. Boulikas, T. Nuclear import of DNA repair proteins (англ.) // Anticancer Research[англ.] : journal. — Vol. 17, no. 2A. — P. 843—863. — PMID 9137418.
  10. Wang X.W., Yeh H., Schaeffer L., Roy R., Moncollin V., Egly J.M., Wang Z., Freidberg E.C., Evans M.K., Taffe B.G. p53 modulation of TFIIH-associated nucleotide excision repair activity (англ.) // Nature Genetics : journal. — 1995. — June (vol. 10, no. 2). — P. 188—195. — doi:10.1038/ng0695-188. — PMID 7663514.
  11. Yu A., Fan H.Y., Liao D., Bailey A.D., Weiner A.M. Activation of p53 or loss of the Cockayne syndrome group B repair protein causes metaphase fragility of human U1, U2, and 5S genes (англ.) // Molecular Cell[англ.] : journal. — 2000. — May (vol. 5, no. 5). — P. 801—810. — doi:10.1016/S1097-2765(00)80320-2. — PMID 10882116.
  12. Newman J.C., Bailey A.D., Weiner A.M. Cockayne syndrome group B protein (CSB) plays a general role in chromatin maintenance and remodeling (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 2006. — June (vol. 103, no. 25). — P. 9313—9318. — doi:10.1073/pnas.0510909103. — PMID 16772382.
  13. Wong H.K., Muftuoglu M., Beck G., Imam S.Z., Bohr V.A., Wilson D.M. Cockayne syndrome B protein stimulates apurinic endonuclease 1 activity and protects against agents that introduce base excision repair intermediates (англ.) // Nucleic Acids Research : journal. — 2007. — June (vol. 35, no. 12). — P. 4103—4113. — doi:10.1093/nar/gkm404. — PMID 17567611.
  14. Frosina G. The current evidence for defective repair of oxidatively damaged DNA in Cockayne syndrome (англ.) // Free Radical Biology & Medicine[англ.] : journal. — 2007. — July (vol. 43, no. 2). — P. 165—177. — doi:10.1016/j.freeradbiomed.2007.04.001. — PMID 17603927.
  15. Ciaffardini, F., S. Nicolai, M. Caputo, G. Canu, E. Paccosi, M. Costantino, M. Frontini, A. S. Balajee, and L. Proietti-De-Santis. «The Cockayne Syndrome B Protein Is Essential for Neuronal Differentiation and Neuritogenesis.» Cell Death & Disease. Nature Publishing Group, 29 May 2014. Web. 22 Feb. 2015. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4047889/#bib50>.
  16. Laugel, V., C. Dalloz, M. Durrand, and H. Dollfus. «Mutation Update for the CSB/ERCC6 and CSA/ERCC8 Genes Involved in Cockayne Syndrome.» Human Mutation. Human Genome Variation Society, 5 Nov. 2009. Web. 22 Feb. 2015. <http://onlinelibrary.wiley.com/doi/10.1002/humu.21154/epdf Архивная копия от 2 апреля 2015 на Wayback Machine>.
  17. Nardo T, Oneda R, Spivak G, Mortier L, Thomas P, Orioli D, Laugel V, Stary A, Hanawalt PC, Sarasin A, Stefanini M. 2009. A UV-sensitive syndrome patient with a specific CSA mutation reveals separable roles for CSA in response to UV and oxidative DNA damage. Proc Natl Acad Sci USA 106:6209-6214.
  18. Chang C.H., Chiu C.F., Wang H.C., Wu H.C., Tsai R.Y., Tsai C.W., Wang R.F., Wang C.H., Tsou Y.A., Bau D.T. Significant association of ERCC6 single nucleotide polymorphisms with bladder cancer susceptibility in Taiwan (англ.) // Anticancer Res.[англ.] : journal. — 2009. — Vol. 29, no. 12. — P. 5121—5124. — PMID 20044625.
  19. Liu J.W., He C.Y., Sun L.P., Xu Q., Xing C.Z., Yuan Y. The DNA repair gene ERCC6 rs1917799 polymorphism is associated with gastric cancer risk in Chinese (англ.) // Asian Pac. J. Cancer Prev.[англ.] : journal. — 2013. — Vol. 14, no. 10. — P. 6103—6108. — doi:10.7314/apjcp.2013.14.10.6103. — PMID 24289633.
  20. Chiu C.F., Tsai M.H., Tseng H.C., Wang C.L., Tsai F.J., Lin C.C., Bau D.T. A novel single nucleotide polymorphism in ERCC6 gene is associated with oral cancer susceptibility in Taiwanese patients (англ.) // Oral Oncol.[англ.] : journal. — 2008. — Vol. 44, no. 6. — P. 582—586. — doi:10.1016/j.oraloncology.2007.07.006. — PMID 17933579.
  21. Ma H., Hu Z., Wang H., Jin G., Wang Y., Sun W., Chen D., Tian T., Jin L., Wei Q., Lu D., Huang W., Shen H. ERCC6/CSB gene polymorphisms and lung cancer risk (англ.) // Cancer Lett.[англ.] : journal. — 2009. — Vol. 273, no. 1. — P. 172—176. — doi:10.1016/j.canlet.2008.08.002. — PMID 18789574.

Литература

Ссылки