Топологи́ческое простра́нство — множество, для элементов которого определено, какие из них близки друг к другу. Является центральным понятием общей топологии.
Непреры́вное отображе́ние — отображение из одного пространства в другое, при котором близкие точки области определения переходят в близкие точки области значений.
Боре́левская си́гма-а́лгебра — минимальная сигма-алгебра, содержащая все открытые подмножества топологического пространства. Эти подмножества также называются борелевскими.
Конти́нуум в теории множеств — мощность множества всех вещественных чисел. Обозначается строчной латинской буквой c во фрактурном начертании: . Множество, имеющее мощность континуум, называется континуа́льным множеством.
В этом глоссарии приведены определения основных терминов, используемых в общей топологии. Курсивом выделены ссылки внутри глоссария.
Полное метрическое пространство — метрическое пространство, в котором каждая фундаментальная последовательность сходится.
Сепара́бельное пространство — топологическое пространство, в котором можно выделить счётное всюду плотное подмножество.
Компа́ктное простра́нство — определённый тип топологических пространств, обобщающий свойства ограниченности и замкнутости в евклидовых пространствах на произвольные топологические пространства.
Преде́льная то́чка множества в общей топологии — это такая точка, любая проколотая окрестность которой пересекается с этим множеством.
Категория Бэра — один из способов различать «большие» и «маленькие» множества. Подмножество топологического пространства может быть первой или второй категории Бэра.
То́чка — один из фундаментальных (неопределяемых) математических объектов, свойства которого задаются системой аксиом. Нестрого можно представлять точку как неделимый элемент соответствующего математического пространства, определяемого в геометрии, математическом анализе и других разделах математики. В классической геометрии и в большинстве её обобщений все геометрические фигуры считаются состоящими из точек.
Норма́льное простра́нство — топологическое пространство, удовлетворяющее аксиомам отделимости T1, T4, то есть такое топологическое пространство, в котором одноточечные множества замкнуты и любые два непересекающихся замкнутых множества отделимы окрестностями (то есть содержатся в непересекающихся открытых множествах).
Двойственность Понтрягина — обобщение преобразования Фурье на локально компактные абелевы группы.
В топологии и связанных разделах математики вполне несвязное пространство — это топологическое пространство, которое не имеет нетривиальных связных подмножеств. В любом топологическом пространстве пустое множество и одноточечные множества — связные. Во вполне несвязном пространстве это единственные связные подмножества.
Полное по Чеху пространство — топологическое пространство, являющееся G-дельта-множеством в некотором объемлющем хаусдорфовом компакте.
Мера Радона — мера на сигма-алгебре борелевских множеств на хаусдорфовом топологическом пространстве X, которая является локально конечной и внутреннее регулярной.
Польское пространство — пространство, гомеоморфное полному метрическому пространству со счётным плотным подмножеством.
Fσ-множество — счетное объединение замкнутых множеств. Обозначение «F-сигма» происходит от первой буквы слова фр. Fermé (замкнутый), и греческой буквы σ (сигма), обозначающей в данном контексте суммирование. Двойственным понятием к понятию F-сигма-множества является понятие G-дельта-множества.
Вещественнозначная функция — функция, значениями которой являются вещественные числа. Другими словами, это функция, которая назначает вещественное число каждому элементу области определения функции.
Эта страница основана на
статье Википедии.
Текст доступен на условиях лицензии
CC BY-SA 4.0; могут применяться дополнительные условия.
Изображения, видео и звуки доступны по их собственным лицензиям.