Мито́з, или кариокине́з — непрямое деление клетки, наиболее распространённый способ размножения эукариотических клеток. Биологическое значение митоза состоит в строго одинаковом распределении хромосом между дочерними ядрами, что обеспечивает образование генетически одинаковых дочерних клеток и сохраняет преемственность в ряду клеточных поколений. Перед делением число хромосом в клетке увеличивается в два раза продольным разделением на две части каждой из них, поэтому в каждую из дочерних клеток переходит столько же хромосом, сколько их было в родительской клетке.
Мейо́з, или редукционное деление — деление ядра эукариотической клетки с уменьшением числа хромосом в два раза. Происходит в два этапа. В результате мейоза образуются гаметы, споры и другие зародышевые клетки.
Кле́точный цикл — период существования клетки от момента её образования путём деления материнской клетки до собственного деления или гибели.
Профа́за — самая первая фаза митоза, признаком которой является появление в ядре конденсированных хромосом.
Анафа́за — фаза митотического деления эукариотических клеток, в которой сестринские хроматиды синхронно расходятся с образованием двух дочерних хромосом, которые неспешно растаскиваются к противоположным полюсам веретена деления. В ходе анафазы кинетохорные микротрубочки укорачиваются, а полюса удаляются друг от друга, таким образом, оба процесса вносят свой вклад в расхождение хроматид.
Телофа́за — фаза митотического деления эукариотических клеток, во время которой два набора дочерних хромосом достигают полюсов веретена деления и деконденсируются. Начинается сборка ядерной оболочки вокруг каждого набора хромосом. Разделение цитоплазмы достигается путём сокращения сократительного кольца (цитокинез).
Ядерные поры, или ядерные поровые комплексы, — крупные белковые комплексы, пронизывающие ядерную мембрану и осуществляющие транспорт макромолекул между цитоплазмой и ядром клетки. Переход молекул из ядра в цитоплазму и в обратном направлении называется ядерно-цитоплазматическим транспортом.
Микротрубочки — белковые внутриклеточные структуры, входящие в состав цитоскелета.
Гетерохромати́н — участки хроматина, находящиеся в течение клеточного цикла в конденсированном (компактном) состоянии. Особенностью гетерохроматиновой ДНК является крайне низкая транскрибируемость.
Деле́ние кле́тки — процесс образования из родительской клетки двух или более дочерних клеток. Обычно деление клетки — это часть клеточного цикла.
Кле́тка — структурно-функциональная элементарная единица строения и жизнедеятельности всех организмов, обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию. Все живые организмы либо состоят из множества клеток, либо являются одноклеточными организмами. Раздел биологии, занимающийся изучением строения и жизнедеятельности клеток, получил название цитологии. Также принято говорить о биологии клетки, или клеточной биологии.
Ко́мплекс, стимули́рующий анафа́зу, также называемый циклосома, представляет собой крупное белковое соединение, которому отводится решающая роль в активации анафазы митоза. Функционально комплекс стимуляции анафазы представляет собой убиквитинлигазу и катализирует реакции присоединения молекул убиквитина к различным целевым белкам, которые в итоге подвергаются протеолизу.
G1-фа́за (от англ. Gap 1 phase) — первая из четырёх фаз клеточного цикла эукариотических клеток. На этом этапе интерфазы клетка увеличивается в размерах и синтезирует мРНК и белки, готовясь к последующему после интерфазы митозу. G1-фаза завершается с началом S-фазы интерфазы.
Киназа Aurora B — белок, прикрепляющий митотическое веретено деления к центромере.
Полярное тельце веретена (ПТВ) — центр организации микротрубочек, грибной эквивалент центросомы клеток животных. В отличие от центросомы в ПТВ нет центриолей. У дрожжей S. cerevisiae под электронным микроскопом оно выглядит как электронно-плотная многослойная структура, встроенная в оболочку ядра. Помимо основной функции, полярное тельце веретена опосредованно участвует в сегрегации хромосом, расположении ядер в клетке, кариогамии и ориентации веретена деления. Кроме того, оно является местом восприятия сигналов MEN пути, и, возможно участвует в формировании стенки сумки споры S. cerevisiae.
Нуклеофозми́н — ядрышковый белок, у человека кодируется геном NPM1, локализованным на 5-й хромосоме. Нуклеофозмин перемещается между ядром и цитоплазмой и действует как многофункциональный шаперон нуклеиновых кислот, принимающий участие в таких процессах, как биогенез рибосом, ремоделирование хроматина, регуляция митоза, поддержание стабильности генома, репарация ДНК и транскрипция. Нарушения в работе нуклеофозмина могут приводить к развитию злокачественных новообразований и других заболеваний; в частности, мутации, затрагивающие его ген, приводят к развитию острого миелоидного лейкоза.
Те́льце гисто́новых ло́кусов — ядерное тельце, представляющее собой скопление факторов транскрипции генов, кодирующих гистоны, и созревания гистоновых пре-мРНК. К числу таких факторов относят белок NPAT, необходимый для транскрипции генов гистонов, а белок FLASH и малый ядерный рибонуклеопротеин U7 необходим для процессинга гистоновых пре-мРНК. Тельца гистоновых локусов обнаружены в клетках млекопитающих и дрозофилы. В клетках амфибий аналогичные ядерные тельца носят название C-снурпосома.
Контрольная точка веретена, также известная как переход от метафазы к анафазе, контрольная точка сборки веретена (SAC), контрольная точка метафазы или митотическая контрольная точка, представляет собой контрольную точку клеточного цикла во время митоза или мейоза, которая предотвращает разделение дуплицированных хромосом (анафазу) до тех пор, пока каждая хромосома не будет должным образом прикреплена к веретену. Для достижения правильной сегрегации две кинетохоры на сестринских хроматидах должны быть прикреплены к противоположным полюсам веретена. Только такой способ прикрепления гарантирует, что каждая дочерняя клетка получит одну копию хромосомы. Определяющей биохимической особенностью этой контрольной точки является стимуляция комплекса, способствующего анафазе, комплексами M-фазы циклин-CDK, что, в свою очередь, вызывает протеолитическую деструкцию циклинов и белков, удерживающих вместе сестринские хроматиды.
Контрольные точки клеточного цикла — это механизмы контроля в эукариотическом клеточном цикле, которые обеспечивают его правильное развитие. Каждая контрольная точка служит потенциальной точкой завершения клеточного цикла, во время которой оцениваются условия клетки, при этом продвижение через различные фазы клеточного цикла происходит только при соблюдении благоприятных условий. В клеточном цикле есть много контрольных точек, но три основных из них: контрольная точка G1, также известная как контрольная точка начала или ограничения или основная контрольная точка; контрольная точка G2/M; и переход от метафазы к анафазе, также известный как контрольная точка веретена. Прохождение через эти контрольные точки в значительной степени определяется активацией циклин-зависимых киназ регуляторными белковыми субъединицами, называемыми циклинами, различные формы которых продуцируются на каждой стадии клеточного цикла для контроля специфических событий, происходящих в нём.
Ряд биохимических переключателей контролируют переходы между различными фазами клеточного цикла и внутри них. Клеточный цикл представляет собой серию сложных, упорядоченных, последовательных событий, которые контролируют деление одной клетки на две клетки и включают в себя несколько различных фаз. Фазы включают фазы G1 и G2, репликацию ДНК или S-фазу, а также фактический процесс клеточного деления, митоза или М-фазу. Во время М-фазы хромосомы расходятся и происходит цитокинез.